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各点 Kan拡張を定義するもう 1つの方法が proarrow equipmentである．proarrowは
profunctorの一般化であり，これを使って各点 Kan拡張を定義する（これを p-各点 Kan
拡張と呼ぶ）．
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1 定義
定義．Bを bicategoryとする．Bの proarrow equipmentとは，bicategory Mと pseud-
ofunctor (−)∗ : B → Mであって以下の条件を満たすものをいう．

(p1) Ob(B) = Ob(M)であり，(−)∗ は対象について恒等写像である．
(p2) (−)∗ は局所忠実充満である．
(p3) 任意の 1-morphism f ∈ B に対して，f∗ ∈ Mは右随伴 f∗ を持つ．（ここでは随

伴 f∗ a f∗ の unit, counitを ηf , εf で表す．）
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また B の 1-morphismをmap，Mの 1-morphismを proarrowと呼ぶ．

例 1．id1 : 1 → 1は 1の proarrow equipmentである．

例 2．bicategory Mの局所充満部分 bicategory B ⊂ Mを

• Ob(B) := Ob(M)とする．
• Ob(B(a, b)) := {f : a → b | f は右随伴を持つ }とする．

により定める．このとき包含 B → Mは B の proarrow equipmentである．

例 3．V を完備かつ余完備な対称モノイダル閉圏としたとき (−)∗ : V -Cat → V -Prof
を以下のように定める．

• C ∈ V -Catに対して C∗ := C とする．
• C,D ∈ V -Catに対して関手 (−)∗ : V -Cat(C,D) → V -Prof(C,D)を

V -Cat(C,D) y•−−−→ V -Cat(C, D̂) = V -Prof(C,D)

により定める．即ち V -関手 F : C → D に対して F∗ := y ◦ F である．
• F : A → B，G : B → C に対して，合成の定義より

G∗ � F∗ = y†(yG) ◦ y ◦ F ∼= y ◦G ◦ F = (GF )∗

B̂ Ĉ

A B C

y y
F∗

F

y†(yG)

G

である．この同型を φGF : G∗ � F∗ ⇒ (GF )∗ と書く．これは G,F について自然
である．

• C ∈ V -Catに対して (idC)∗ = y である．
• このとき V -Prof における次の等式が成り立つ．

B C

A D

=⇒ φGF ===⇒φH,GF

F∗

G∗

H∗(GF )∗

(HGF )∗

=

B C

A D

=⇒φHG===⇒ φHG,F

F∗

G∗

H∗
(HG)∗

(HGF )∗
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D

C D

=

===⇒ φid,F

=

F∗

id

(id)∗

(idb◦F )∗

F∗

=

D

C D
=====⇒

λ

F∗

id

F∗

C

C D

=

===⇒φF,id

=

(id)∗

id

F∗

(F◦id)∗

F∗

=

C

C D

=====⇒

ρ

id

F∗

F∗

• 以上により (−)∗ : V -Cat → V -Prof は pseudofunctorである．
• y : D → D̂ は V -Catの 1-morphismとして忠実充満である（「米田構造」の PDF
を参照）．従って (−)∗ : V -Cat(C,D) → V -Prof(C,D) は忠実充満関手である．
即ち (−)∗ は局所忠実充満である．

• V -関手 F : C → D に対して F∗ a F ∗ : C −◦→ D である．
• 以上により (−)∗ : V -Cat → V -Prof は proarrow equipmentである．

命題 4．f 7→ f∗ は pseudofunctor (−)∗ : Bcoop → Mを与える．

証明. β : f ⇒ g : a → bを B の 2-morphismとすると，g∗ a g∗ より g†
∗id = 〈g∗, ηg〉と

なるから，次の等式を満たす β∗ : g∗ ⇒ f∗ が一意に存在する．

b

a a

=⇒

ηf

g∗

f∗

ida

f∗

⇒

β∗ =

b

a a

=⇒

ηg

g∗

ida

g∗

f∗

⇒
β∗

これにより (−)∗ が pseudofunctorになることを示せばよい．

• 普遍性から明らかに (−)∗ : Bcoop(a, b) → M(a, b)は関手である．
• a

f−→ b
g−→ cとすると f∗ a f∗，g∗ a g∗ だから g∗ ◦ f∗ a f∗ ◦ g∗ である．この随伴
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の unitを η′
gf として，次の等式により τgf を定める．（φは (−)∗ の φである．）

c

b

b

a a
=⇒η

′
gf

(g◦f)∗

f∗

g∗

ida

g∗

f∗⇒

φgf

=

c

b

a a

=⇒

ηg◦f

(g◦f)∗

ida

g∗

f∗

(g◦f)∗ ⇒
τgf

φgf が同型だから τgf も同型になる．そこで φ′
gf := τ−1

gf と定める．
• φ′

gf は自然同型

Bcoop(b, c) × Bcoop(a, b)

M(b, c) × M(a, b) Bcoop(a, c)

M(a, c)

(−)∗×(−)∗

M

===⇒
φ′

∼
M

(−)∗

を定めることが普遍性から分かる．
• a ∈ B に対して ψ′

a を次の等式で定める．

a

a a

=⇒

ρ

id∗

id

id

id

⇒

ψa =

a

a a

=⇒

ηid

id∗

id

id∗

f∗

⇒
ψ′

a

• このとき次の図式は可換であることが分かる．

f∗ ◦ (g∗ ◦ h∗) f∗ ◦ (h ◦ g)∗ ((h ◦ g) ◦ f)∗

(f∗ ◦ g∗) ◦ h∗ (g ◦ f)∗ ◦ h∗ (h ◦ (g ◦ f))∗

f∗•φ′
hg φ′

h◦g,f

F (αhgf )αf∗g∗h∗

φ′
gf •h∗ φ′

h,g◦f

f∗ ◦ id f∗

f∗ ◦ id∗ (id ◦ f)∗

ρ

λ∗f∗•ψ′

φ′
idb,f

idFa ◦ f∗ f∗

id∗ ◦ f∗ (f ◦ id)∗

λ

ρ∗ψ′•f∗

φ′
f,ida
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以上により (−)∗ は pseudofunctorである．

この (−)∗ : Bcoop → Mは明らかに局所忠実充満である．

命題 5．f : a → b，u : b → aをmapとするとき

B において f a uである⇐⇒ Mにおいて f∗ ∼= u∗ である．

証明. (=⇒) f a uとすると (−)∗ が pseudofunctorだから f∗ a u∗ である．よって右随
伴の一意性により f∗ ∼= u∗ である．

(⇐=) f∗ ∼= u∗ とすると f∗ a f∗ だから f∗ a u∗ である．(−)∗ が局所忠実充満だから
f a uである．（「2-category」の PDFを参照．）

2 p-各点 Kan拡張
定義．B の図式

b

a c

=⇒

η
f

g

l

を考える．〈l, η〉 が f に沿った g の p-各点左 Kan 拡張とは，(−)∗ を適用して得られる
Mの図式

b

a c

⇐
=η∗f∗

g∗

l∗

が右 Kanリフトを与えることをいう．

※ ここで η∗ は厳密には (l ◦ f)∗ ⇒ g∗ という 2-morphismであるが，これを pseud-
ofunctorによる同型 (l ◦ f)∗ ∼= f∗ ◦ l∗ を使って η∗ : f∗ ◦ l∗ ⇒ g∗ とみなしてこのよ
うな図式を描いている．詳しくは「2-category」の PDFの pasting theoremを参照．

例 6．proarrow equipment (−)∗ : V -Cat → V -Prof（例 3）において p-各点左 Kan
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拡張
D

C M=⇒

η
F

E

L

を考える．即ち
D

C M⇐
=η∗F∗

E∗

L∗

が V -Prof での右 Kanリフトということだが，右 Kanリフト (F ∗)‡E
∗ は

(F ∗)‡E
∗(d,m) ∼= Ĉ(F ∗d,E∗m) ∼= Ĉ(D(F−, d),M(E−,m))

で与えられる．即ち d ∈ D とm ∈ Mについて自然に

M(Ld,m) ∼= Ĉ(D(F−, d),M(E−,m))

となり，Lは V -関手の意味での各点左 Kan拡張である（この Lの unitが元の η と一致
していることは以下の議論から分かる）．
逆に Lが V -関手の各点左 Kan拡張であるとする．即ち d ∈ D とm ∈ Mについて自
然な同型

σdm : M(Ld,m) → Ĉ(D(F−, d),M(E−,m))

が存在したとする．Ĉ(D(F−, d),M(E−,m))が定める V -profunctorを R : M −◦→ Dと
すると σ : L∗ ⇒ Rは V -Prof の 2-morphismである．そこで

θ :=
D

C M⇐
=ε

⇐σ
F∗

E∗

R

L∗

と定める（但し εは右 Kanリフト Rの counitである）．合成

M(Ld,m) ⊗ D(Fc, d)
σdm⊗id−−−−−→ Ĉ(D(F−, d),M(E−,m)) ⊗ D(Fc, d)
evc⊗id−−−−→ [D(Fc, d),M(Ec,m)] ⊗ D(Fc, d)
ev−→ M(Ec,m)
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は dについて自然であり，そこからコエンドの普遍性で得られる射∫ d∈D
M(Ld,m) ⊗ D(Fc, d) → M(Ec,m)

が θcm である．これは余米田の補題により

θcm : M(LFc,m) → M(Ec,m)

とみなすことができる．ここで θcm : M(LFc,m) → M(Ec,m)はmについて自然だか
ら，米田の補題によりMの射 ηc : Ec −V→ LFcを使って θcm = (− ◦ ηc)と書ける．つま
り余米田の補題の証明によれば次の図式が可換である．（但し ζd はM(L−,m)の随伴射
である．）

M(Ld,m) ⊗ D(Fc, d)

Ĉ(D(F−, d),M(E−,m)) ⊗ D(Fc, d)

[D(Fc, d),M(Ec,m)] ⊗ D(Fc, d)

M(LFc,m)

M(Ec,m)

σdm⊗id

evc⊗id

θcm = (−◦ηc)

ζd

ev

よって随伴により次の可換図式を得る．（ζ ′
d は随伴射である．）

M(Ld,m)

Ĉ(D(F−, d),M(E−,m))

[D(Fc, d),M(Ec,m)]

[D(Fc, d),M(LFc,m)]

[D(Fc, d),M(Ec,m)]

σdm

evc

[id,−◦ηc]

ζ′
d

id

(7)

このとき

M(LFc,m)

M(LFc,m)

[D(Fc, Fc),M(LFc,m)]

[I,M(LFc,m)]

id [jF c,id]

ζ′
F c

i

(∗) が可換

⇐⇒

M(LFc,m) ⊗ D(Fc, Fc)

M(LFc,m) ⊗ I

M(LFc,m)

M(LFc,m)

id⊗jF c id

ζF c

ρ

が可換
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⇐⇒

D(Fc, Fc)

I

[M(LFc,m),M(LFc,m)]

[M(LFc,m),M(LFc,m)]

jF c id

M(L−,m)

jM(LF c,m)

が可換

となり，最後の図式は可換であるから (∗)も可換である．そこで合成

[D(Fc, Fc),M(m,LFc)] [jF c,id]−−−−→ [I,M(m,LFc)] i−1

−−→ M(m,LFc)

を ξm と書けば，次の可換図式が得られる．

I

M(LFc, LFc)

Ĉ(D(F−, F c),M(E−, LFc))

[D(Fc, Fc),M(Ec, LFc)]

[D(Fc, Fc),M(LFc, LFc)]

[D(Fc, Fc),M(Ec, LFc)]

M(LFc, LFc)

M(Ec, LFc)

idLF c

σF c,LF c

evc

[id,−◦ηc] −◦ηc

id

ζ′
F c

id

ξLF c

ξEc

(7) (ξ)

(∗)

この図式の右回りの合成が ηc だから，ηc は左回りの合成

I
jT F c−−−→ M(TFc, TFc) ∼= Ĉ(D(F−, F c),M(E−, TFc))
evc−−→ [D(Fc, Fc),M(Ec, TFc)] [jF c,id]−−−−→ [I,M(Ec, TFc)]
i−1

−−→ M(Ec, TFc)

と一致することが分かり，これは各点左 Kan 拡張 L の unit と一致する（「豊穣圏」の
PDFを参照）．更に η の取り方から η∗ = θ となり

D

C M⇐
=η∗F∗

E∗

L∗

は右 Kanリフトである．故に 〈L, η〉は p-各点左 Kan拡張である．
以上によりこの場合の p-各点左 Kan 拡張は豊穣圏論における各点左 Kan 拡張と一致
する．
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y-各点左 Kan拡張のときと同様に，p-各点左 Kan拡張が「各点左 Kan拡張」として
の性質を持っていることを見ていく．

命題 8．p-各点左 Kan拡張は左 Kan拡張である．

証明. B の図式
b

a c

=⇒

η
f

g

l

を p-各点左 Kan拡張とする．これが左 Kan拡張であることを示すため，図式

b

a c

=⇒θ
f

g

k

を考える．これに (−)∗ を適用すれば，次の右辺が得られるから，p-各点左 Kan拡張の定
義より左辺の τ が得られる．

b

a c

⇐
=η∗

⇐τ
f∗

g∗

l∗

k∗

=
b

a c

⇐
=θ∗f∗

g∗

k∗

(−)∗ は局所忠実充満だから，この τ は τ : l ⇒ k を使って τ∗ と書ける．このとき再び局
所忠実充満性より

b

a c

=⇒

η

⇒τ
f

g

l

k

=
b

a c

=⇒θf

g

k

となる．このような τ は明らかに一意だから 〈l, η〉 が左 Kan 拡張であることが分かっ
た．

定義．s : a → bを map，Φ: x → aを proarrowとする．sの Φ-weighted colimitとは
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map colimΦs : x → bであって Φ‡s
∗ ∼= (colimΦs)∗ となるものをいう．

x

a b

⇐
=Φ

s∗

(colimΦs)∗

例 9．map s : a → bに対して colimidas ∼= sである．

例 10．lが f に沿った g の p-各点左 Kan拡張ならば，l ∼= colimf∗
g である．

定義．s : a → bを map，Φ: x → aを proarrowとして colimΦs : x → bが存在するとす
る．このときmap f : b → cが colimΦsと交換する
⇐⇒ f∗ が右 Kanリフト colimΦsと交換する．

命題 11．f : a → b，g : a → cを mapとして p-各点左 Kan拡張 〈f†g, η〉が存在すると
する（このとき例 10より colimf∗

g も存在する）．k : c → dが colimf∗
g と交換するとす

る．このとき k は f†g と交換する．

証明. κを

κ :=
b

a c d

=⇒

η
f

g

f†g

k

と定義すると，k が colimf∗
g と交換するから

b

a c

⇐
=κ∗f∗

(k◦g)∗

(k◦f†g)∗

=
b

a a c

⇐
=η∗f∗

g∗

(f†g)∗

k∗

が右 Kanリフトとなる．

命題 12．map f : b → cが左随伴のとき，f は任意の weighted colimitと交換する．

証明. B において f a uとするとMにおいて f∗ a u∗ である．故に f∗ は右 Kanリフト
と交換する．

命題 13．s : a → bをmap，Φ: x → aと Ψ: u → xを proarrowとして colimΦsが存在
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するとする．このとき
colimΨcolimΦs ∼= colimΦ◦Ψs

である（但しこの式は，片方が存在するならばもう片方も存在して同型となることを
表す）．

証明. 右 Kanリフトの性質から明らか（「2-categoryでの随伴・Kan拡張・忠実充満」の
PDFを参照）．

u

x

a b
=⇒

=⇒

Φ

s∗

colimΦs

Ψ
colimΨcolimΦs∼= colimΦ◦Ψs

命題 14．f : a → b，g : a → cを mapとする．f が右随伴を持つとするとすると左 Kan
拡張 f†g が存在するが，この左 Kan拡張は p-各点左 Kan拡張である．

証明. f a uとして，これの unitを η とする．f†g の unitは

κ :=
b

a a c

=⇒

η
f

ida

u

g

で定義される κである．一方で f∗ a u∗ であり，η∗ が counitとなる．従って (f∗)‡id =
〈u∗, η∗〉は絶対右 Kanリフトとなり，

b

a c

⇐
=κ∗f∗

g∗

u∗
=

b

a a c

⇐
=η∗f∗

(ida)∗

u∗

g∗

も右 Kanリフトとなる．

3 p-忠実充満
定義．map f : a → bが p-忠実充満⇐⇒ ηf が同型である．
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例 15．例 3 の proarrow equipment (−)∗ : V -Cat → V -Prof では p-忠実充満とは V -
忠実充満のことである．

次の定理の通り p-忠実充満は p-各点左 Kan拡張に付随した「忠実充満」である．

定理 16．B の図式
b

a c

=⇒

η
f

g

l

が p-各点左 Kan拡張で，f が p-忠実充満ならば，η は同型である．

証明. 〈l, η〉が p-各点左 Kan拡張だから

b

a c

⇐
=η∗f∗

g∗

l∗

が右 Kanリフトである．次に f∗ a f∗ より合成

a

b b c

⇐
=εf

f∗

idb

f∗

l∗

も右 Kanリフトである．故にそれらを合成した

a

b

a c

⇐
=η∗

⇐
=εf •l∗

f∗

g∗

l∗

f∗
f∗◦l∗
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も右 Kanリフトである．今，f が p-忠実充満だから ηf が同型であり，合成

a

b

a c

⇐
=η∗

⇐
=εf •l∗

f∗

g∗

l∗

f∗
f∗◦l∗

ida

⇒
ηf

も右Kanリフトとなる．即ちこの合成は同型である．一方で ηf と εf は f∗ a f∗ の unit,
counitだったから

a

b

a c

⇐
=η∗

⇐
=εf •l∗

f∗

g∗

l∗

f∗
f∗◦l∗

ida

⇒
ηf

= b

a c

⇐
=η∗f∗

g∗

l∗

となり η∗ も同型である．(−)∗ は局所忠実充満だったから η も同型である．

命題 17．map f : a → bが p-忠実充満である⇐⇒ (f∗)‡f∗ = 〈ida, idf∗〉となる．

証明. f∗ a f∗ より (f∗)‡idb = 〈f∗, εf 〉は絶対右 Kan拡張である．また等式

a

b b a

⇐
=εf

f∗

idb

f∗

f∗

ida

⇐ηf

=

a

b a

⇐
=idf∗

f∗

f∗

ida

が成り立つ．
(=⇒) f が p-忠実充満であるから ηf が同型であり，従って上記等式より (f∗)‡f∗ =

〈ida, idf∗〉が分かる．
(⇐=) (f∗)‡f∗ = 〈ida, idf∗〉だとすると，上記等式と右 Kan拡張の普遍性により ηf は
同型となる．
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補題 18．B の図式
b

a c

=⇒

η
f

g

l (19)

に (−)∗ を適用して得られるMの図式

b

a c
⇐

=η∗f∗

g∗

l∗

が右 Kan拡張を与えるならば，(19)は絶対左 Kanリフトである．

証明. (19)が絶対左 Kanリフトであることを示すため，B の図式

b x

a c

=⇒θf

g

j

k

を考える．k∗ a k∗ の unit εk と合わせてMの図式

b x

a c c

⇐
=θ∗

j∗

k∗f∗

g∗

k∗

⇐
=εk

id

を得る．Mにおいて l∗ = (f∗)‡g∗ だから τ が一意に存在して

b

a c

⇐
=η∗

f∗

g∗

l∗

k∗◦j∗

τ
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b x

a c x

j∗

f∗

g∗

k∗

id

l∗⇐
=η∗ ⇐

=τ =

b x

a c c

⇐
=θ∗

j∗

k∗f∗

g∗

k∗

⇐
=εk

id

となる．εk が絶対右 Kanリフトだから，ある ξ が存在して

b x

c c

j∗

k∗
k∗

id

l∗

⇐
= ξ

⇐
=εk

=

b x

c c

j∗

k∗

id

l∗ ⇐
=τ

となる．このとき絶対右 Kanリフトの普遍性から

b x

a c

j∗

k∗f∗

g∗

l∗⇐
=η∗

⇐
= ξ

=

b x

a c

⇐
=θ∗

j∗

k∗f∗

g∗

である．

補題 20．g a u : c → aとする．B の図式

b

a c

=⇒

η
f

g

l

が絶対左 Kanリフトを与える⇐⇒ (−)∗ を適用して得られるMの図式

b

a c

⇐
=η∗f∗

g∗

l∗

が右 Kan拡張を与える．
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証明. ⇐=は補題 18であるから =⇒を示せばよい．
g a uの unitを β とする．仮定より f†g = 〈l, η〉が絶対左 Kanリフトで，g a uだか
ら，合成

b

a

c c
=⇒β

=⇒ η

u

idc

g

f

l

も絶対左 Kanリフトである．故に l a u ◦ f となる．従って命題 5より l∗ ∼= (u ◦ f)∗ ∼=
u∗ ◦ f∗ ∼= g∗ ◦ f∗ となる．

命題 21．map f : a → bが p-忠実充満ならば f は忠実充満である．

証明. f が p-忠実充満とすると命題 17 より (f∗)‡f∗ = 〈ida, idf∗〉 である．故に補題 18
より絶対左 Kanリフト f†f = 〈id, id〉が成り立つ．よって f は忠実充満である．

命題 22．f a u : a → bを B における随伴とする．このとき，f が忠実充満ならば f は
p-忠実充満である．

証明. f が忠実充満とすると絶対左 Kan リフト f†f = 〈ida, idf 〉 が成り立つ．故に補
題 20により (f∗)‡f∗ = 〈id, id〉である．従って命題 17より f は p-忠実充満である．

命題 23．f : a → b，g : b → cを mapとする．g が p-忠実充満のとき

f が p-忠実充満である⇐⇒ g ◦ f が p-忠実充満である．

証明. ηf , ηg, ηg◦f には次のような関係がある．
c

b

a a

ηg◦f=⇒ ∼=

g∗

f∗

ida

(g◦f)∗

(g◦f)∗

=

c

b b

a a a

ηg=⇒

ηf=⇒

∼ =

∼=

g∗ g∗

idbf∗

f∗

f∗

ida ida

(g◦f)∗

今 g が p-忠実充満だから ηg が同型である．従って

ηf が同型⇐⇒ ηg◦f が同型

16



となる．

4 c-各点左 Kan拡張との関係
p-各点左 Kan拡張は次のようにして c-各点左 Kan拡張と関係がある．

定義．B の図式
t b

s a

=⇒κ

q

fj

p

に対してMの図式

t b

s a

=⇒κ

q∗

f∗j∗

p∗

:=

t

t b

s a

a

=⇒κ∗
q∗

f∗j∗

p∗

⇒
ηq

⇒
εp

q∗
id

id
p∗

を κの mateという．このとき κが Beck-Chevalley条件を満たすとは κが同型になる
ことをいう．

命題 24．B の図式
t b

s a c

=⇒

η
f

g

l
j

q

p

=⇒κ

において 〈l, η〉は p-各点左 Kan拡張で，κは Beck-Chevalley条件を満たすとする．この
とき全体は左 Kan拡張である（即ち j†(g ◦ p) = 〈l ◦ q, (l • κ) ∗ (η • p)〉である）．

17



証明. 左 Kan拡張であることを示すため，次の B の図式を考える．

t

s a c

=⇒θ

g

j

p

h

θ′ を次のように定義する．

θ′ :=

t

s a c

a

⇐
=θ∗

g∗

j∗

p∗

h∗

p∗
id

⇒
εp

κ が Beck-Chevalley 条件を満たすから，σ := (κ−1 • h∗) ∗ θ とすれば次の等式が得ら
れる．

t b

s a c

=⇒

σ

g∗

j∗

p∗

h∗

q∗

f∗
=⇒κ

=
t

s a c

=⇒

θ′

g∗

j∗

p∗

h∗

〈l, η〉が p-各点左 Kan拡張だから，次の τ : q∗ ◦ h∗ ⇒ l∗ が得られる．

t b

a c

=⇒η∗

g∗

h∗

q∗

f∗ l∗

=⇒

τ

=
t b

a c

⇐
=σ

g∗

q∗

f∗

h∗

18



このとき

t

t b

s a

s a c

=⇒ η∗

g∗

j∗

p∗

h∗

q∗

f∗ l∗

=⇒

τ

=⇒κ∗

⇒
ηq

⇒
εp

⇒
ηp

q∗
id

idp∗id

p∗

=
t b

s a c

s

=⇒η∗

g∗

j∗

p∗

h∗

q∗

f∗ l∗

=⇒

τ

=⇒κ

⇒
ηp

id
p∗

=
t

s a c

s

=⇒
θ′

g∗

j∗

p∗

h∗

⇒
ηp

id
p∗

=
t

s a c

s a

⇐
=θ∗

g∗

j∗

p∗

h∗

⇒
εp

⇒
ηp idp∗id

p∗

= θ∗

となるから，ξ : l ◦ q ⇒ hを

ξ∗ =

t

t b

c

h∗

q∗

l∗

=⇒τ⇒
ηq

q∗
id
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となるように取れば

t b

s a c
=⇒

η
f

g

l
j

q

p

=⇒κ

h

=⇒ξ

=
t

s a c

=⇒θ

g

j

p

h

である．このような ξ は一意だから左 Kan拡張であることが分かった．

例 25．例 3の proarrow equipmentで V = Setの場合，即ち (−)∗ : Cat → Prof を考
える．この場合コンマ圏から得られる

C1 D

F ↓G C0

=⇒κ

G

FQ

P

は Beck-Chevalley条件を満たす．
. . . ) この場合 κの定義

C1 D

F ↓G C0

=⇒κ

G∗

F∗Q∗

P∗

:=

C1

C1 D

F ↓G C0

C0

=⇒κ∗
G∗

F∗Q∗

P∗

⇒
ηG

⇒
εP

G∗
id

id
P∗

に出てくるそれぞれの自然変換の成分は

• c1 ∈ C1 に対して (ηG)c1 = G : HomC1(−, c1) → HomD(G−, Gc1)．
• d ∈ D に対して κ∗

d = − ◦ κ : HomF↓G(GQ−, d) → HomF↓G(FP−, d)．

20



• c0 ∈ C0 に対して

(εP )c0 :
∫ x∈F↓G

HomC0(Px, c0) × HomC0(−, Px) → HomC0(−, c0)

は Hom(Px, c0) × Hom(a, Px) 3 〈g, f〉 7→ g ◦ f ∈ Hom(a, c0)からコエンド
の普遍性で得られる射である．

となるから c0 ∈ C0 と c1 ∈ C1 に対して κc0c1 は合成∫ x∈F↓G
HomC1(Qx, c1) × HomC0(c0, Px)

∼=
∫ a∈C1

∫ x∈F↓G
HomC1(a, c1) × HomC1(Qx, a) × HomC0(c0, Px)

∫ ∫
(G×id)

−−−−−−−→
∫ a∈C1

∫ x∈F↓G
HomD(Ga,Gc1) × HomC1(Qx, a) × HomC0(c0, Px)

∼=
∫ x∈F↓G

HomD(GQx,Gc1) × HomC0(c0, Px)
∫

(−◦κx)×id
−−−−−−−−→

∫ x∈F↓G
HomD(FPx,Gc1) × HomC0(c0, Px)

∼=
∫ a∈C0

∫ x∈F↓G
HomD(Fa,Gc1) × HomC0(Px, a) × HomC0(c0, Px)

∫
(id×ε)

−−−−−→
∫ a∈C0

HomD(Fa,Gc1) × HomC0(c0, a)

∼= HomD(Fc0, Gc1)

となる．そこでコエンド ∫ x∈F↓G HomC1(Qx, c1) × HomC0(c0, Px)の unitと κc0c1

の合成を σ とすると，σ による 〈g, f〉 ∈ HomC1(Qx, c1) × HomC0(c0, Px)の行き先
は（コエンドの構成で使う同値類を [ ]で表すと）

〈g, f〉 unit7−−→ [g, f ] ∼= [idc1 , g, f ]∫ ∫
(G×id)

7−−−−−−−→ [idGc1 , g, f ] ∼= [Gg, f ]∫
(−◦κx)×id

7−−−−−−−−→ [Gg ◦ κx, f ] ∼= [Gg ◦ κx, idPx, f ]∫
(id×ε)

7−−−−−→ [Gg ◦ κx, f ] ∼= Gg ◦ κx ◦ Ff

となる．この σ がコエンドを与えることを示せば κc0c1 が同型と分かる．そこで xに
ついて自然な写像 θx : HomC1(Qx, c1) × HomC0(c0, Px) → S を取る．次の図式を
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可換にするような点線の写像 hが一意に存在することを示せばよい．

HomC1(Qx, c1) × HomC0(c0, Px)

HomD(Fc0, Gc1) S

θx

σx

h

そこで k ∈ HomD(Fc0, Gc1)とすると xk := 〈c0, c1, k〉 ∈ F ↓Gである．これを使っ
て h(k) := θxk

(〈idc1 , idc0〉) と定める．このとき明らかに上の図式は可換である．こ
のような hは明らかに一意である．

従ってこの場合，命題 24より p-各点左 Kan拡張ならば c-各点左 Kan拡張であり， こ
れは第 2章「Kan拡張」の PDFで示した事実である．

5 y-各点 Kan拡張との関係
この節ではある程度の条件の下で，y-各点 Kan拡張と p-各点 Kan拡張が同じものであ
ることを示す（定理 28）．以下，この節では strict 2-category C の米田構造が更に次の条
件を満たしているとする．

(y6) a ∈ C が smallならば âは余完備である．

充満部分 2-category A ⊂ C の任意の対象が small であるとする．このとき a 7→ â は
pseudofunctor A → C を定めることが分かる．これは relative pseudomonad と呼ばれ
るモナド（を一般化したもの）になる．ここからKleisli圏に相当するものを構成すること
ができる*1が，この場合それは bicategoryとなる．これは以下により定まる bicategory
Mであることが分かる．ここでは relative pseudomonadの一般論には立ち入らず，M
の構成だけを述べる．

• Ob(M) := Ob(A)とする．
• a, b ∈ Aに対してM(a, b) := C(a, b̂)とする．
• a, b ∈ A とすると，条件 (y6) より b̂ が余完備なので，任意の f : a → b̂ に対して

y-各点左 Kan拡張 y†
af が存在する．これにより関手 y†

a : C(a, b̂) → C(â, b̂)が得ら
れる．

*1 詳しくは [4]を参照．

22



• a, b, c ∈ Aに対して関手 � : M(b, c) × M(a, b) → M(a, c)を合成

C(b, ĉ) × C(a, b̂)
y†

b ×id
−−−−→ C (̂b, ĉ) × C(a, b̂) •−→ C(a, ĉ)

で定める．
• a

f−→ b
g−→ cをMの 1-morphismとする．

a

â

b

b̂ ĉ

f g
ya yb

y†
af y†

bg

y†
a((y†

bg)◦f)

y†
bg が y-各点左 Kan拡張なので普遍随伴により y†

bg a ĉ(g, 1)となる．従って y†
bg

は y†
af と交換するので同型

α′
gf : y†

a((y†
bg) ◦ f) ⇒ y†

bg ◦ y†
af

が存在する．これは自然変換

C(̂b, ĉ) × C(a, b̂)

C(a, ĉ)

C(b, ĉ) × C(a, b̂)

C(â, ĉ)

C(b, ĉ) × C(â, b̂)

C(̂b, ĉ) × C(â, b̂)

=⇒α
′

• id×y†
a

y†
b ×id

y†
a

y†
b ×id

•
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を定める．このとき αを合成

C(b, d̂) × C(a, b̂)

C(ĉ, d̂) × C(b, ĉ) × C(a, b̂)

C (̂b, d̂) × C(a, b̂)

C(c, d̂) × C(b, ĉ) × C(a, b̂)

C(ĉ, d̂) × C (̂b, ĉ) × C(a, b̂)

C(a, d̂)

C(c, d̂) × C (̂b, ĉ) × C(a, b̂)

C(ĉ, d̂) × C(a, ĉ)

C(c, d̂) × C(a, ĉ)
=⇒
α′×id

=⇒∼

=

•×id

y†×id

y†×id×id

•×id

•

id×y†×id

y†×id×id

id×•

•

id×•

y†×id

により定める．
• a ∈ Aに対して ida := ya : a → âとする．
• f : a → bをMの 1-morphismとする．即ち C の 1-morphism f : a → b̂である．
y†
byb = idだから idb � f = (y†

byb) ◦ f = f である．また ya が y-忠実充満だから，
y†
af の unit（ρf で表す）は同型である．これにより

f � ida = (y†
af) ◦ ya ∼= f

となる．
• このとき次の図式が可換である．

((k � h) � g) � f

(k � (h � g)) � f (k � h) � (g � f)

k � ((h � g) � f) k � (h � (g � f))

αkhg•f

αk,h�g,f

k•αhgf

αk�h,g,f

αk,h,g�f

(g � idb) � f g � (idb � f)

g � f

αg,idb,f

idρg•f
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• 以上によりMは bicategoryである．

このとき pseudofunctor (−)∗ : A → Mを以下により定める．

• a ∈ Aに対して a∗ := aとする．
• a, b ∈ Aに対して (−)∗ : A(a, b) → M(a, b)を yb • − : C(a, b) → C(a, b̂)により定
める．

• Aの 1-morphism a
f−→ b

g−→ cに対して，合成の定義より

g∗ � f∗ = y†
b(yc ◦ g) ◦ yb ◦ f ∼= yc ◦ g ◦ f = (g ◦ f)∗

b̂ ĉ

a b c

yb yc

f∗

f

y†
b (yc◦g)

g

である．この同型を φgf : g∗ � f∗ ⇒ (g ◦ f)∗ と書く．これは g, f について自然で
ある．

• a ∈ Aに対して (ida)∗ = ya である．
• このときMにおける次の等式が成り立つ．

b c

a d

=⇒ φgf

===⇒φh,g◦f

f∗

g∗

h∗
(g◦f)∗

(h◦g◦f)∗

=

b c

a d

=⇒φhg

===⇒ φhg,f

f∗

g∗

h∗
(h◦g)∗

(h◦g◦f)∗

b

a b

=

===⇒ φid,f

=

f∗

id

(id)∗

(idb◦f)∗

f∗

=

b

a b

=====⇒

id

f∗

id

f∗
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a

a b

=

===⇒φf,id

=

(id)∗

id

f∗

(f◦id)∗

f∗

=

a

a b
=====⇒

ρ

id

f∗

f∗

• 以上により (−)∗ : A → Mは pseudofunctorになる．

命題 26．上のように定義した (−)∗ : A → Mは proarrow equipmentである．

証明. yb は忠実充満である．よって (−)∗ = yb • − : C(a, b) → C(a, b̂)は忠実充満関手で
ある．故に任意の map f : a → bに対して f∗ が右随伴を持つことを示せばよい．

※ そこで仮に M における随伴 f∗ a f∗ : a → b が成り立ったとする．即ち M の
2-morphism η : id ⇒ f∗ � f∗ と ε : f∗ � f∗ ⇒ idで

b b

a a

η

=⇒

ε=⇒

ida

f∗ f∗

f∗

idb

= idf∗

b b

a a

ε=⇒ η

=⇒

idb

f∗ f∗

f∗

ida

= idf∗

となるものが存在する．これはMの定義によれば，C における等式

b̂ b̂

b

a â

=⇒

η

=⇒y
†
bε

f

yb

y†
bf

∗

ya

y†
a(yb◦f)

id

= ρ−1
yb◦f
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b b̂

â â

=⇒ ε

=⇒y
†
aη

yb

f∗

id

y†
a(yb◦f)

y†
bf

∗

= ρf∗

を意味している．

そこで f∗ := b(f, 1) と定める．f−1 := b̂(yb ◦ f, 1) と書くと y†
b(f∗) = f−1 である．

y†
b(f∗)の unitを βf と書く．即ち βf = ρb(f,1) であり，これは同型である．

b̂

b

a â

=⇒ χ
yb◦f

f

ya

yb
f−1

=

b̂

b

a â

=⇒ χ
f

=⇒ β
f

f

ya

b(f,1)

yb
y†

b (̂b(f,1))

(27)

普遍随伴により y†
a(yb ◦ f) a f−1 となるので，この随伴の unit, counitを η′, ε′ とする．

すなわち
b̂ b̂

â â

=⇒ η
′ =⇒ ε

′y†
a(yb◦f) f−1

id

y†
a(yb◦f)

id

= idy†
a(yb◦f)

b̂ b̂

â â

=⇒ ε
′

=⇒ η
′

id

f−1

id

y†
a(yb◦f)

f−1

= idf−1

である．このとき

η :=

b̂

â â

a

=⇒ η
′

y†
a(yb◦f) f−1

id

⇒ idya
ya

=⇒

ρ−1
yb◦f

ya◦f
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ε :=

b̂ b̂

âb

=⇒ ε
′

id

f−1 y†
a(yb◦f)

=⇒ β
f

yb

b(f,1)

と定義すれば y†
aη = η′ かつ y†

bε = ε′ であり

ρ−1
yb◦f =

b̂ b̂

â â

a
=⇒ η

′ =⇒ ε
′y†

a(yb◦f) f−1

id

y†
a(yb◦f)

id

⇒ idya
ya

=⇒

ρ−1
yb◦f

ya◦f

=

b̂ b̂

â

a

=⇒

η

=⇒y
†
bεyb◦f f−1

y†
a(yb◦f)

id

ya

であり，また

b̂

âb

a

⇒ βf

⇒ χf

f−1

f

yb

b(f,1)

ya

=

b̂ b̂

â âb

a

⇒ βf

⇒ χf

f−1

f

yb

b(f,1)

ya

=⇒ ε
′

=⇒ η
′

=⇒ id

id

id

y†
a(yb◦f)

f−1

ya

=

b̂ b̂

â âb

a

⇒ βf

⇒ χf

f−1

f

yb

b(f,1)

ya

=⇒ ε
′

=⇒

η=⇒

ρyb◦f

id

id
y†

a(yb◦f)
f−1

ya
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=

b̂ b̂

â âb

a

=⇒ ε

=⇒ y
†
aη

⇒ χf

id

id

y†
a(yb◦f)

f−1

f

yb

b(f,1)

ya =⇒ id

ya

となるから左 Kan拡張の普遍性により

b̂ b̂

â âb

=⇒ ε

=⇒y
†
aη

id

id

y†
a(yb◦f)

f−1

yb

b(f,1)

= βf = ρb(f,1)

である．よって f∗ a f∗ が分かった．

定理 28．上述の proarrow equipment (−)∗ : A → Mを取り Aの図式

b

a c

=⇒

η
f

g

l

を考える．更に b(f, 1)は admissibleであるとする．このとき

〈l, η〉が y-各点左 Kan拡張である⇐⇒ 〈l, η〉が p-各点 Kan拡張である．

証明. まず準備として，η に対して η′, η′′ を C において

b c

a â

f

l

c(g,1)

ya

g=⇒

η

=⇒χg
=

b c

a â

f

l

c(g,1)

ya

b(f,1)

=⇒χf =⇒η′

c â

b b̂

l

c(g,1)

â(b(f,1),1)

yb

b(f,1)

=⇒η′

=⇒χb(f,1)
=

c â

b b̂

l

c(g,1)

â(b(f,1),1)

yb

c(l,1)

=⇒χl

=⇒η
′′
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となるように取る．次に (−)∗ の定義（命題 4）より η∗ = c(η, 1)はMにおける次の図式
によって与えられる．

c

a a
=⇒

ηg

(l◦f)∗

g∗

ida

g∗

⇒η∗ =

c

a a

=⇒ηl◦f

(l◦f)∗

ida

(l◦f)∗

g∗

⇒
η∗

これは proarrow equipment (−)∗ : A → Mの定義によれば C における次の等式になる．

b c ĉ

a â

f

l yc

g−1

ya

g

=⇒

η

=⇒χyc◦g =

b c ĉ

a â

f

l yc

g−1

ya

(l◦f)−1

=⇒χyc◦l◦f
⇒
y†

cη
∗

これは (27)を使うと次のようになる．

b c ĉ

a â

f

l yc

g−1

ya

g
c(g,1)=⇒

η

=⇒χg

⇒
βg

=

b c ĉ

a â

f

l yc

g−1

ya

(l◦f)−1c(l◦f,1)

=⇒χl◦f

⇒βl◦f

⇒
y†

cη
∗

y†
cη

∗ の定義より次の等式が成り立つ．

c ĉ

â

yc

g−1(l◦f)−1c(l◦f,1) ⇒βl◦f

⇒
y†

cη
∗

=

c ĉ

â

yc

g−1
c(l◦f,1) c(g,1)

⇒
η∗

=⇒
βg

βg は同型だったから

b c

a â

f

l

ya

g
c(g,1)=⇒

η

=⇒χg

=

b c

a â

f

l

ya

c(l◦f,1)

=⇒χl◦f

c(g,1)

⇒
η∗
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を得る．ここで

b c

a â

f

l

ya

c(l◦f,1)
=⇒χl◦f

=

b c

a â

b̂f

l

ya

c(l,1)

f−1

=⇒χf

yb

=⇒χ
l

b(f,1)

⇒βf

であるから，〈b(f, 1), χf 〉の普遍性により

b c

â

l

c(g,1)

=⇒η
′

b(f,1)
=

b c

â

b̂

l

f−1

c(g,1)

yb
=⇒χ

l

b(f,1)

⇒βf
⇒
η∗

が分かる．従って

c â

b b̂

l

c(g,1)

â(b(f,1),1)

yb

c(l,1)

=⇒χl

=⇒η
′′ =

c â

b b̂

l

c(g,1)

â(b(f,1),1)

yb

b(f,1)

=⇒η′

=⇒χb(f,1)

=

c â

b b̂

b̂
l

c(g,1)

â(b(f,1),1)

yb

b(f,1)

=⇒χl

=⇒χb(f,1)

yb

f−1

⇒η∗

⇒β
f =

c â

b b̂

b̂
l

c(g,1)

â(b(f,1),1)

yb

=⇒χl

yb

f−1

⇒η∗

id

=⇒id

=⇒

γ

となる（但し最後は y†
byb = idの普遍性により γ を取った）．このとき米田構造の一般論
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により γ は f−1 a ranf ∼= â(b(f, 1), 1)の unitである．また χl の普遍性により

c â

b̂

c(g,1)

ranf

c(l,1)
=⇒η′′

=

c â

b̂

b̂

c(g,1)

ranf

c(l,1)
f−1

⇒η∗

id

=⇒

γ

となる．
（y-各点 Kan拡張 =⇒ p-各点 Kan拡張）η′′ が同型であるとする．Mの図式

b

a c

⇐
=η∗

f∗

g∗

l∗

が右 Kanリフトであることを示すため，Mの図式

b

a c

⇐
=θ

f∗

g∗

Φ

を考える．M における合成 f∗ � Φ とは C における合成 (y†
bf

∗) ◦ Φ であるが，ここで
y†
bf

∗ ∼= f−1 である．

c b

b̂ â

Φ

f∗
yb

f−1

従ってMの 2-morphism θとは C の 2-morphism θ : f−1 ◦ Φ ⇒ g∗ のことである．そこ
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で C の 2-morphism τ を

τ :=
c â

b̂ b̂

=⇒θ
f−1

c(g,1)

Φ

ranf

id

=⇒

γ

c(l,1)

⇒(η′′)−1

で定義する．即ち τ はMの 2-morphism τ : Φ ⇒ l∗ である．このときMにおける等式

c a

b

=⇒η
∗

f∗

g∗

l∗

Φ

⇒τ
=

c a

b

=⇒ θ f∗

g∗

Φ

が成り立つことを示そう．つまり，C における等式

c â

b̂

=⇒η
∗

f−1

c(g,1)

c(l,1)

Φ

⇒τ
=

c â

b̂

=⇒ θ f−1

c(g,1)

Φ

を示す．そのためには 〈f−1, γ〉の普遍性により

c â

b̂ b̂

=⇒η
∗

f−1

c(g,1)

c(l,1)

Φ

⇒τ

ranf

id

=⇒

γ
=

c â

b̂ b̂

=⇒ θ f−1

c(g,1)

Φ

ranf

id

=⇒

γ

を示せばよい．それは

c â

b̂ b̂

=⇒η
∗

f−1

c(g,1)

c(l,1)

Φ

⇒τ

ranf

id

=⇒

γ
=

c â

b̂ b̂

=⇒ η
′′

c(g,1)

c(l,1)

Φ

⇒τ

ranf

id

=

c â

b̂ b̂

=⇒ θ f−1

c(g,1)

Φ

ranf

id

=⇒

γ
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により成り立つ．
（p-各点 Kan拡張 =⇒ y-各点 Kan拡張）C において随伴 f−1 a ranf が成り立つから，
これの counitを εとすると

c â

b̂

c(g,1)

f−1

ranf ◦c(g,1)

=⇒ ε
′ :=

c â â

b̂

c(g,1) id

ranf
f−1=⇒ ε

は右 Kanリフトである．故に普遍性からある θ が存在して

c â

b̂

c(g,1)

f−1

c(l,1)

=⇒ ε
′

⇒θ
=

c â

b̂

c(g,1)

f−1

c(l,1)
=⇒ η

∗

となる．今仮定より (f−1)‡c(g, 1) = 〈c(l, 1), η∗〉だから θ は同型である．一方

c â

b̂

c(g,1)

f−1

c(l,1)

=⇒ ε
′

⇒η′′
=

c â â

b̂ b̂

c(g,1) id

c(l,1) ranf
f−1

id

=⇒ η
′′ =⇒ ε

=

c â â

b̂ b̂

c(g,1) id

c(l,1) f−1 ranf
f−1

id

=⇒η
∗

=⇒

γ

=⇒ ε =

c â â

b̂ b̂

c(g,1) id

c(l,1) f−1
f−1

id

=⇒ η
∗

=⇒id

となるから θ = η′′ であり，故に η′′ は同型である．

例 29．V ′-CATの米田構造において小 V -豊穣圏は smallである．また小 V -豊穣圏 C に
対して Ĉ は V -余完備である．よってここから V -Catの proarrow equipmentを得るこ
とができ，それは例 3の proarrow equipmentである．
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