ultracompact と選択公理

alg-d

https://alg-d.com/math/ac/

2025年5月27日

定義. X を位相空間, $\mathcal{D} \subset \mathcal{P}(\mathbb{N})$ を超フィルターとする.

- (1) $x \in X$ が点列 $\langle a_n \rangle_{n \in \mathbb{N}}$ の \mathcal{D} -集積点 \iff 任意の開集合 $x \in U \subset X$ に対して $\{n \in \mathbb{N} \mid a_n \in U\} \in \mathcal{D}$ となる.
- (2) X が \mathcal{D} -コンパクト \iff 任意の点列 $\langle a_n \rangle_{n \in \mathbb{N}}$ が \mathcal{D} -集積点を持つ.

定義. X が ultracompact

 \iff 任意の超フィルター $\mathcal{D} \subset \mathcal{P}(\mathbb{N})$ に対して X が \mathcal{D} -コンパクトである.

まず基本的な性質としてコンパクトならば ultracompact である (系 2). これを示すために \aleph_0 -bounded というものを導入する.

定義. X が \aleph_0 -bounded

 \iff 任意の点列 $\langle a_n \rangle_{n \in \mathbb{N}}$ に対して、あるコンパクト部分集合 $Y \subset X$ が存在して $\{a_n \mid n \in \mathbb{N}\} \subset Y$ となる.

命題 1. ℵ₀-bounded な空間は ultracompact である.

証明. X が \aleph_0 -bounded で、かつ ultracompact でないと仮定する.即ちある超フィルター $\mathcal{D} \subset \mathcal{P}(\mathbb{N})$ が存在して、X は \mathcal{D} -コンパクトでない.つまり \mathcal{D} -集積点を持たないような点列 $\langle a_n \rangle_{n \in \mathbb{N}}$ が存在する.このとき

$$U := \{ U \subset X \mid U \text{ は開集合, } \{ n \in \mathbb{N} \mid a_n \in U \} \notin \mathcal{D} \}$$

とすれば、 \mathcal{D} -集積点の定義より \mathcal{U} は X の開被覆となる. X が \aleph_0 -bounded だから、あるコンパクト部分集合 $Y \subset X$ が存在して $\{a_n \mid n \in \mathbb{N}\} \subset Y$ となるが、このとき \mathcal{U}

は Y の開被覆でもある.よってある $U_0, \cdots, U_m \in \mathcal{U}$ が存在して $Y \subset U_0 \cup \cdots \cup U_m$ と書ける. $U_i \in \mathcal{U}$ なので $\{n \in \mathbb{N} \mid a_n \in U_i\} \notin \mathcal{D}$ である. \mathcal{D} が超フィルターだから $A_i := \{n \in \mathbb{N} \mid a_n \notin U_i\} \in \mathcal{D}$ となり,従って $A_0 \cap \cdots \cap A_m \in \mathcal{D}$ である.ところが

$$A_0 \cap \dots \cap A_m = \{ n \in \mathbb{N} \mid a_n \notin U_0 \cap \dots \cap U_m \}$$
$$\subset \{ n \in \mathbb{N} \mid a_n \notin Y \} = \emptyset$$

となるからDがフィルターであることに矛盾する.

系 2. コンパクトならば ultracompact である.

証明. 明らかにコンパクトならば \aleph_0 -bounded である. よって成り立つ.

さて, $\mathcal{D} \subset \mathcal{P}(\mathbb{N})$ を $m \in \mathbb{N}$ で生成される単項フィルターとすれば,任意の点列 $\langle a_n \rangle_{n \in \mathbb{N}}$ は明らかに \mathcal{D} -集積点 a_m を持つ.よって \mathcal{D} -コンパクトというのは \mathcal{D} が単項でない超フィルターの場合に興味がある.ところがこのような超フィルターの存在は **ZF** では証明できないことが知られている.以上を踏まえて,次の定理が成り立つ.

定理 3. 選択公理

 \iff 単項でない超フィルター $\mathcal{D} \subset \mathcal{P}(\mathbb{N})$ が存在して、更に ultracompact 空間の直積は ultracompact になる.

証明. (\Longrightarrow) 選択公理の下で単項でない超フィルターが存在することはよく知られている. ultracompact 空間の直積が ultracompact であることを示すため, $\{X_{\lambda}\}_{\lambda\in\Lambda}$ を ultracompact 空間の族とする. $X_{\lambda}\neq\emptyset$ としてよい. $\mathcal{D}\subset\mathcal{P}(\mathbb{N})$ を超フィルターとして $\langle a_{n}\rangle_{n\in\mathbb{N}}$ を $X=\prod_{\lambda\in\Lambda}X_{\lambda}$ の点列とする. $\pi_{\lambda}\colon X\to X_{\lambda}$ を標準射影とすれば, $\langle \pi_{\lambda}(a_{n})\rangle_{n\in\mathbb{N}}$ は X_{λ} の点列だから \mathcal{D} -集積点 $x_{\lambda}\in X_{\lambda}$ が存在する. このとき $x=\langle x_{\lambda}\rangle_{\lambda\in\Lambda}\in X$ が \mathcal{D} -集積点であることを示せばよい. そこで $x\in U\subset X$ を開近傍とする. 直積位相の定義より,ある $\lambda_{1},\cdots,\lambda_{m}\in\Lambda$ と開集合 $U_{\lambda_{i}}\subset X_{\lambda_{i}}$ が存在して $\pi_{\lambda_{1}}^{-1}(U_{\lambda_{1}})\cap\cdots\cap\pi_{\lambda_{m}}^{-1}(U_{\lambda_{m}})\subset U$ となる. このとき x_{λ} の取り方から $\{n\in\mathbb{N}\mid \pi_{\lambda_{i}}(a_{n})\in U_{\lambda_{i}}\}\in\mathcal{D}$ である. \mathcal{D} がフィル

ターだから
$$\bigcap_{i=1}^m \{n\in\mathbb{N}\mid \pi_{\lambda_i}(a_n)\in U_{\lambda_i}\}\in\mathcal{D}$$
 となる. すると

$$\bigcap_{i=1}^{m} \{ n \in \mathbb{N} \mid \pi_{\lambda_i}(a_n) \in U_{\lambda_i} \} = \bigcap_{i=1}^{m} \{ n \in \mathbb{N} \mid a_n \in \pi_{\lambda_i}^{-1}(U_{\lambda_i}) \}$$

$$= \left\{ n \in \mathbb{N} \mid a_n \in \bigcap_{i=1}^{m} \pi_{\lambda_i}^{-1}(U_{\lambda_i}) \right\}$$

$$\subset \{ n \in \mathbb{N} \mid a_n \in U \}$$

となるから, \mathcal{D} がフィルターより $\{n \in \mathbb{N} \mid a_n \in U\} \in \mathcal{D}$ が分かる.よって x が $\langle a_n \rangle_{n \in \mathbb{N}}$ の \mathcal{D} -集積点である.

 $(\longleftarrow) \{X_{\lambda}\}_{\lambda \in \Lambda}$ を非空集合の族とする. $Y_{\lambda} := X_{\lambda} \sqcup \mathbb{N}$ の位相を

$$\mathcal{O}_{Y_{\lambda}} := \{ U \subset Y_{\lambda} \mid Y_{\lambda} \setminus U \text{ は有限集合 } \} \cup \mathcal{P}(\mathbb{N})$$

で定める. Y_{λ} はコンパクトだから系 2 より ultracompact となる. よって $Y:=\prod_{\lambda\in\Lambda}Y_{\lambda}$ も仮定により ultracompact である. そこで仮定により存在する単項でない超フィルター $\mathcal{D}\subset\mathcal{P}(\mathbb{N})$ を取れば Y は \mathcal{D} -コンパクトとなる.

 $n\in\mathbb{N}$ と $\lambda\in\Lambda$ に対して $(a_n)_\lambda:=n\in Y_\lambda$ と定めると $a_n\in Y$ である.今 Y が \mathcal{D} -コンパクトだから $\langle a_n\rangle_{n\in\mathbb{N}}$ の \mathcal{D} -集積点 $y=\langle y_\lambda\rangle_{\lambda\in\Lambda}\in Y$ が存在する.このとき任意の $\lambda\in\Lambda$ に対して $y_\lambda\in X_\lambda$ を示せばよい.

そこである $\mu\in\Lambda$ に対して $y_\mu\notin X_\mu$ となると仮定する.即ち $y_\mu\in\mathbb{N}$ である.このとき $\pi_\mu\colon Y\to Y_\mu$ を標準射影とすれば $U:=\pi_\mu^{-1}(\{y_\mu\})\subset Y$ は y の開近傍である.このとき y が \mathcal{D} -集積点だから

$$\mathcal{D} \ni \{ n \in \mathbb{N} \mid a_n \in U \} = \{ n \in \mathbb{N} \mid \pi_{\mu}(a_n) = y_{\mu} \} = \{ y_{\mu} \}$$

となり、 \mathcal{D} が単項でないことに矛盾する.

定義. X を位相空間とする.

- (1) *X* が可算コンパクト
 - \iff 部分集合 $\mathcal{U}\subset\mathcal{O}_X,\ |\mathcal{U}|=\aleph_0$ が $X=\bigcup\mathcal{U}$ を満たすならば,ある整数 $n\geq 0$ とある $U_0,\cdots,U_n\in\mathcal{U}$ が存在して $X=U_0\cup\cdots\cup U_n$.

補題 4. 可算コンパクトならば sequentially limit point compact である*1.

証明. X を可算コンパクトで、かつ sequentially limit point compact でないと仮定する. 即ち点列 $\{a_n\}_{n\in\mathbb{N}}$ で集積点を持たないものが存在する. $n\neq m$ ならば $a_n\neq a_m$ としてよい. $A:=\{a_n\mid n\in\mathbb{N}\}$ として、 $F\in\mathcal{P}_{\mathrm{fin}}(A)$ に対して

$$U_F := \bigcup \{ U \subset X \mid U \cap A = F \}$$

と定める. $\{U_F \mid F \in \mathcal{P}_{fin}(A)\}$ は X の可算開被覆である.

 $\mathcal{D}_{\mathrm{fin}}(A)$ も可算無限集合である.よって開被覆であることを示せばよい.そこで $x\in X$ とする. $\{a_n\}_{n\in\mathbb{N}}$ の取り方から,開近傍 $U\ni x$ で $|U\cap A|<\infty$ となるものが存在する.このとき $F:=U\cap A$ とすれば $x\in U\subset U_F$ である.

よって X が可算コンパクトだから,ある $F_0,\cdots,F_m\in\mathcal{P}_{\mathrm{fin}}(A)$ が存在して $U_{F_0}\cup\cdots\cup U_{F_m}=X$ となる.このとき

$$A = A \cap X = A \cap (U_{F_0} \cup \cdots \cup U_{F_m}) = F_0 \cup \cdots \cup F_m$$

となるが、この右辺は明らかに有限集合なので矛盾する.

補題 5. \aleph_0 -bounded ならば sequentially limit point compact である *2 .

証明. X を \aleph_0 -bounded で,かつ sequentially limit point compact でないと仮定する. 即ち点列 $\{a_n\}_{n\in\mathbb{N}}$ で集積点を持たないものが存在する.X が \aleph_0 -bounded だから,コンパクトな $Y\subset X$ が存在して $\{a_n\mid n\in\mathbb{N}\}\subset Y$ となる.補題 4 の証明と同様に可算開被覆 $\{U_F\mid F\in\mathcal{P}_{\mathrm{fin}}(A)\}$ を取れば,これは Y の開被覆でもある.よって補題 4 と同様にして矛盾する.

定理 6. 次の命題は同値.

- (1) 選択公理
- (2) ultracompact 空間の直積は可算コンパクトである.
- (3) ultracompact 空間の直積は sequentially limit point compact である.
- (4) ℵ₀-bounded space の直積は可算コンパクトである.

^{*1} 可算選択公理の下で逆が成り立つことが知られている. つまり **ZFC** では可算コンパクトと sequentially limit point compact は同値である.

 $^{*^2}$ 「 \aleph_0 -bounded ならば可算コンパクト」は可算選択公理と同値であることが知られている [1].

- (5) \aleph_0 -bounded space の直積は sequentially limit point compact である.
- (6) ℵ₀-bounded space の直積は ℵ₀-bounded である.

証明. $(1 \Longrightarrow 2)$ 定理 3 により、ultracompact ならば可算コンパクトを示せばよい. そこで X が ultracompact で、かつ可算コンパクトでないと仮定する.可算コンパク

トでないから,開集合の増大列 $U_0 \subsetneq U_1 \subsetneq \cdots$ で $X = \bigcup_{n \in \mathbb{N}} U_n$ となるものが存在する.

選択公理により $a_n \in U_{n+1} \setminus U_n$ が取れる.

 $\mathcal{D} \subset \mathcal{P}(\mathbb{N})$ を単項でない超フィルターとする. X が ultracompact だから $\langle a_n \rangle_{n \in \mathbb{N}}$ の \mathcal{D} -集積点 x が存在する. $x \in U_m$ となる $m \in \mathbb{N}$ を取ると $\{n \in \mathbb{N} \mid a_n \in U_m\}$ は有限集合である. よって \mathcal{D} が単項でない超フィルターだから $\{n \in \mathbb{N} \mid a_n \in U_m\} \notin \mathcal{D}$ となり x の 取り方に矛盾する.

- $(2 \Longrightarrow 3)$ 補題 4 より明らか.
- $(3 \Longrightarrow 5)$ 命題 1 より明らか.
- $(2 \Longrightarrow 4)$ 命題 1 より明らか.
- $(4 \Longrightarrow 5)$ 補題 4 より明らか.
- $(5 \Longrightarrow 1)$ 定理 3 と全く同様にして示せる.
- $(1\Longrightarrow 6)\ \{X_\lambda\}_{\lambda\in\Lambda}$ を \aleph_0 -bounded の族とする. $X_\lambda\neq\emptyset$ としてよい. $X:=\prod_{\lambda\in\Lambda}X_\lambda$ として $\langle a_n\rangle_{n\in\mathbb{N}}$ を X の点列とする. $\pi_\lambda\colon X\to X_\lambda$ を標準射影とすれば, $\langle \pi_\lambda(a_n)\rangle_{n\in\mathbb{N}}$ は X_λ の点列である. 故にコンパクト集合 $Y_\lambda\subset X_\lambda$ を $\{\pi_\lambda(a_n)\mid n\in\mathbb{N}\}\subset Y_\lambda$ となるように取ることができる. Tychonoff の定理により $Y:=\prod Y_\lambda\subset X$ はコンパクトで

 $(6 \Longrightarrow 5)$ 補題 5 より明らか.

参考文献

[1] E. Tachtsis, On ultracompact spaces in ZF, Topology and its Applications 263 (2019), 257–278, https://doi.org/10.1016/j.topol.2019.06.039