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MT-代数とは位相空間 X の内部を取る操作 P(X) → P(X)を公理化したものである．

定義. MT-代数*1とは 2つ組 ⟨M,□⟩であって以下の条件を満たすものである．

(1) M は完備ブール代数で □ : M → M は写像である．
(2) □1 = 1である*2．
(3) x, y ∈ M に対して □(x ∧ y) = □x ∧ □y である．
(4) x ∈ M に対して □x ≤ xかつ □x ≤ □□xである．

定義. B を完備ブール代数とする．

(1) x ∈ B が原子 (atom) ⇐⇒ xは B \ {0}の極小元である．
(2) B が原子的 (atomic)

⇐⇒任意の x ∈ B に対して原子の族 {aλ}λ∈Λ が存在して x =
∨

λ∈Λ aλ となる．

例 1. 位相空間X に対して □を内部を取る操作とすると，⟨P(X),□⟩がMT-代数の条件
を満たすことはよく知られている．このように書けるMT-代数を spatialという．即ち

MT-代数M が spatial ⇐⇒ある位相空間 X が存在してM ∼= ⟨P(X),□⟩となる．

が定義である．このとき

MT-代数M が spatial ⇐⇒ M が (完備ブール代数として)原始的である．

が知られている．

*1 MTはMcKinsey and Tarskiの頭文字らしい．
*2 1はM の最大元である．同様に最小元は 0で表す．
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定義. M をMT-代数とする．

(1) O(M) := {□x | x ∈ M}とする．
(2) C(M) := {¬□¬x | x ∈ M}とする．C(M)の元を閉元という．
(3) S(M) := {

∧
A | A ⊂ O(M)}とする．

(4) x ∈ M が T0 ⇐⇒ ある s ∈ S(M)と c ∈ C(M)が存在して x = s ∧ cとなる．
(5) x ∈ M が T 1

2
⇐⇒ある u ∈ O(M)と c ∈ C(M)が存在して x = u ∧ cとなる．

(6) S ⊂ M が join-dense ⇐⇒任意の x ∈ M に対して A ⊂ S が存在して x =
∨

Aと
なる．

(7) M が Ti-代数⇐⇒ {x ∈ M | xは Ti}は join-denseである．
(8) x ∈ M がコンパクト⇐⇒ U ⊂ O(M)が x ≤

∨
U を満たすならば，有限部分集合

F ⊂ U が存在して x ≤
∨

F となる．
(9) M がコンパクト⇐⇒ 1がコンパクトである．

例 2. 位相空間 X に対して例 1のMT-代数 P(X)を考えたとき

X が T0-空間⇐⇒ P(X)が T0-代数

である．更に

• x ∈ M が T1 ⇐⇒ x ∈ C(M)である．
• x ∈ M が T2 ⇐⇒ x =

∧
{¬□¬u | x ≤ u ∈ O(M)}である．

と定義すれば i = 1, 2に対しても

X が Ti-空間⇐⇒ P(X)が Ti-代数

であることが知られている．また明らかに

X がコンパクトな位相空間⇐⇒ P(X)がコンパクトMT-代数

である．

MT-代数M に対して O(M)は完備 Heyting代数である．逆に完備 Heyting代数 Lに
対しては，次の命題を満たすようなMT-代数 F (L)を構成することができる．

命題 3. 完備 Heyting代数 Lに対して L ∼= O(F (L))となる．

命題 4. MT-代数M がM ∼= F (O(M))を満たす⇐⇒ M が T 1
2
-代数である．
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補題 5. M が T0-代数で c ∈ C(M) \ {0}が極小元のとき，cはM の原子である．

証明. c ∈ C(M) \ {0} を極小元とする．c が原子であることを示すため 0 < x ≤ c とす
る．M が T0-代数だから，ある T0 な元 0 < y ≤ xが存在する．このとき 0 < y ≤ cで
ある．従って初めから xは T0 であるとしてよい．

T0 の定義より，ある A ⊂ O(M)と c′ ∈ C(M)により x = (
∧

A) ∧ c′ と書ける．この
とき c′ ∧ c ∈ C(M) \ {0}で c′ ∧ c ≤ cだから，cの極小性より c′ ∧ c = cとなる．故に
x ≤ cより x = x ∧ c = (

∧
A) ∧ (c′ ∧ c) = (

∧
A) ∧ cである．よって c ≤ (

∧
A)を示せ

ば x = cが分かる．
そこで c ̸≤ (

∧
A) と仮定する．即ちある a ∈ A により c ̸≤ a となる．このとき

0 < c ∧ ¬a ≤ c で c ∧ ¬a ∈ C(M) だから c ∧ ¬a = c である．従って c ≤ ¬a だから
c ∧ a = 0となる．つまり x = (

∧
A) ∧ c ≤ a ∧ c = 0となり矛盾する．

定理 6. 次の命題は同値．

(1) 選択公理
(2) コンパクトMT-代数M に対して，C(M) \ {0}は極小元を持つ．
(3) コンパクト T0-代数は閉原子を持つ．
(4) コンパクト T 1

2
-代数は閉原子を持つ．

証明. ((1)=⇒(2)) M をコンパクトMT-代数とする．「非自明な有界束は極大イデアルを
持つ」は選択公理と同値である．
※ 証明等については束を参照．

よって O(M)は極大イデアル I を持つ．このとき ∨
I ̸= 1である．

. . . )
∨

I = 1と仮定する．M がコンパクトだから，有限部分集合 S ⊂ I が存在して
1 =

∨
S と書ける．すると I がイデアルで S ⊂ I が有限集合だから ∨

S ∈ I となる
ので，1 ∈ I となり矛盾する．∨
I ∈ O(M)だから c := ¬(

∨
I) ∈ C(M)である．cが C(M) \ {0}の極小元であること

を示せばよい．そこで x < cかつ x ∈ C(M)のとき x = 0を示せばよい．
まず (¬x)↓ ⊂ O(M) はイデアルで I ⊂ (¬x)↓ となる．x < c より ∨

I < ¬x とな
るので ¬x ∈ (¬x)↓ \ I である．即ち I ⊊ (¬x)↓ となる．I は極大イデアルだったから
(¬x)↓ = O(M)であり，従って ¬x = 1である．即ち x = 0となる．

((2)=⇒(3)) M をコンパクト T0-代数とする．仮定 (2)より極小元 c ∈ C(M) \ {0}が
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取れる．このとき補題 5より cは原子である．
((3)=⇒(4)) 明らか．
((4)=⇒(1)) 選択公理と同値な条件「非自明でコンパクトな完備 Heyting代数は極大イ
デアルを持つ」を示す．Lを非自明でコンパクトな完備 Heyting代数とする．命題 3より
L ∼= O(F (L)) となる．特に F (L) は非自明である．またこのとき F (L) ∼= F (O(F (L)))
となるから，命題 4より F (L)は T 1

2
-代数である．Lがコンパクトであることから F (L)

もコンパクトであることが分かる．よって仮定 (4) より F (L) は閉原子 c を持つ．この
とき

I := {x ∈ O(F (L)) | x ≤ ¬c}

は O(F (L))のイデアルである．この I が極大であることを示せばよい．
そこでイデアル J ⊋ I が存在すると仮定する．x ∈ J \ I を取る．即ち x ̸≤ ¬cである．
つまり c ̸≤ ¬xとなるから c ∧ ¬x < cとなる．cは原子だから c ∧ ¬x = 0である．即ち
¬c ∨ x = 1となるから，1 ∈ J となり矛盾する．
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