代数的整数論 類体論入門

 $\operatorname{alg-d}$

2021-03-20

代数的整数論 類体論入門

- alg-d twitter: https://twitter.com/alg_d
 Youtube: https://www.youtube.com/alg-dx
 WEBサイト: http://alg-d.com/
- 代表作(?)
 選択公理と同値な命題集 http://alg-d.com/math/ac/
 常識的な圏論の PDF http://alg-d.com/math/kan_extension/
- 選択公理が専門ではない
- 圏論が専門でもない
- 専門はなんと代数的整数論
- 今日は,代数的整数論における類体論がどういう主張なのか、どういう応用があるのかを説明して,皆さんに類体論に入門してもらうのが目的です.

石田信,代数的整数論

代数的整数論の入門書. 薄めでギャップもそんなにないのでサッと読める. 類体論については書いてない.

高木 貞二, 代数的整数論

類体論の教科書 1. 大好き

加藤 和也, 黒川 信重, 斎藤 毅, 数論 I Fermat の夢と類体論

類体論の教科書 2. 今読むなら普通はこれなのかな?

J. ノイキルヒ,代数的整数論

類体論の教科書3

【命題】 (Fermat の二平方和定理)

素数 $p \neq 2$ に対して

ある
$$a, b \in \mathbb{Z}$$
 が存在して $p = a^2 + b^2 \Longleftrightarrow p \equiv 1 \pmod{4}$

証明.

 (\Longrightarrow) $p=a^2+b^2$ と書けたとする. p は奇数だから,a を偶数 b を奇数としてよい.そこで a=2a',b=2b'+1 と書けば

$$p = a^{2} + b^{2}$$

$$= (2a')^{2} + (2b' + 1)^{2}$$

$$= 4a'^{2} + 4b'^{2} + 4b' + 1$$

$$\equiv 1 \pmod{4}.$$

 (\longleftarrow) $p \equiv 1 \pmod 4$ とする. $t^2 \equiv -1 \pmod p$ となる $t \in \mathbb{Z}$ が存在する.

∵)Wilson の定理により $(p-1)! \equiv -1 \pmod{p}$ である.よって p = 4k + 1 と書けば $\operatorname{mod} p$ で $-1 \equiv (p-1)!$ $= (1 \cdot 2 \cdots (2k)) ((2k+1)(2k+2) \cdots (p-2)(p-1))$ $= (1 \cdot 2 \cdots (2k)) ((p-2k)(p-(2k-1)) \cdots (p-2)(p-1))$

正整数 e を $(e-1)^2 となるように取る.$

 $\equiv (2k)!(-1)^{2k}(2k)! = ((2k)!)^2$

$$A := \{0, 1, \cdots, e-1\}$$
 として写像

$$A^2 \ni \langle a, b \rangle \longmapsto (a - bt \bmod p) \in \mathbb{Z}/p\mathbb{Z}$$

を考えると $|A^2|=e^2>p$ だからこの写像は単射ではない.故に異なる二元 $\langle a,b\rangle, \langle c,d\rangle\in A^2$ が存在して $a-bt\equiv c-dt\pmod p$ となる.このとき

$$(a-c)^{2} + (b-d)^{2} \equiv ((a-c) - (b-d)t)((a-c) + (b-d)t)$$

$$\equiv 0 \pmod{p}$$

である.即ち $(a-c)^2+(b-d)^2>0$ は p の倍数であるが,一方 $0\leq a,b,c,d\leq e-1$ より $(a-c)^2,(b-d)^2\leq (e-1)^2$ となる. 従って $(a-c)^2+(b-d)^2\leq 2(e-1)^2<2p$ が分かるので $p=(a-c)^2+(b-d)^2$ でなければならない.

Fermat の二平方和定理はこのように初等的に証明できるが,少 し難しい.

実はこの定理は環 Z で考えるのではなく、Gauss 整数環

$$\mathbb{Z}[\sqrt{-1}] := \{a + b\sqrt{-1} \mid a, b \in \mathbb{Z}\}\$$

で考えればより自然に証明できる.何故かというと $\mathbb{Z}[\sqrt{-1}]$ では $a^2+b^2=(a+b\sqrt{-1})(a-b\sqrt{-1})$ と書けるので,この定理は

素数 p は環 $\mathbb{Z}[\sqrt{-1}]$ でいつ"分解"するか?

という問題になるからである. (後でもう少し詳しくやります)

 $\mathbb Z$ における"分解"については「素因数分解の一意性」が知られている.

【定理】

任意の正整数 n は

$$n=p_1^{e_1}\cdots p_g^{e_g}$$
 $(p_i$ は相異なる素数, $e_i>0)$

と (順番を除いて)一意に書ける.

これを Z の言葉で書き直すと次のようになる.

【定理】

任意の整数 $n \neq 0$ は

$$n=\underline{w}\,p_1^{e_1}\cdots p_g^{e_g}\;(\underline{w=\pm 1}\,,\;p_i\;$$
は相異なる素数, $e_i>0)$

と (順番を除いて)一意に書ける.

※ 環論の言葉で言えば「 \mathbb{Z} は UFD(一意分解整域) である」.

これは $\mathbb{Z}[\sqrt{-1}]$ の場合どうなるか?

【定義】

 $P \in \mathbb{Z}[\sqrt{-1}]$ が G-素数とは以下を満たすこととする. (これはここだけの用語)

- (1) $P \neq 0$
- (2) P は単数でない
- (3) $\alpha, \beta \in \mathbb{Z}[\sqrt{-1}]$ に対して 「 $P = \alpha\beta \Longrightarrow \alpha$ または β が単数」
- (4) $\operatorname{Re} P > 0$
- (5) $Im P \ge 0$
 - lpha $\alpha \in \mathbb{Z}[\sqrt{-1}]$ が単数 $\Longleftrightarrow \alpha^{-1} \in \mathbb{Z}[\sqrt{-1}]$ (つまりこの場合 $\alpha = \pm 1, \pm \sqrt{-1}$)

【定理】

任意の
$$\alpha \ (\neq 0) \in \mathbb{Z}[\sqrt{-1}]$$
 は

$$\alpha=wP_1^{e_1}\cdots P_g^{e_g}$$
 $(w$ は単数, P_i は相異なる G-素数, $e_i>0)$

と (順番を除いて)一意に書ける.

つまり $\mathbb{Z}[\sqrt{-1}]$ は UFD である.

$$lpha\in\mathbb{Z}[\sqrt{-1}]$$
 に対して $N(lpha):=lpha
ho(lpha)$ とする. $(
ho$: 複素共役) $lpha=a+b\sqrt{-1}$ $(a,b\in\mathbb{Z})$ と書けば

$$N(\alpha) = (a + b\sqrt{-1})(a - b\sqrt{-1}) = a^2 + b^2 \in \mathbb{Z}$$

であり

$$N(\alpha) = 1 \iff a^2 + b^2 = 1 \iff \alpha = \pm 1, \pm \sqrt{-1}$$

となる. ± 1 , $\pm \sqrt{-1}$ は G-素数でないから

$$P$$
 が G -素数 $\Longrightarrow N(P)$ は 2 以上の整数

が分かる.また定義から明らかに $N(\alpha\beta)=N(\alpha)N(\beta)$ である. これらを踏まえて

素数 p の $\mathbb{Z}[\sqrt{-1}]$ での分解が $p=wP_1^{e_1}\cdots P_g^{e_g}$ であるとすると

$$p^2 = N(p) = N(wP_1^{e_1} \cdots P_g^{e_g}) = N(w)N(P_1)^{e_1} \cdots N(P_g)^{e_g}$$

 $w = \pm 1, \pm \sqrt{-1} \;$ だから $N(w) = 1 \;$ である.

 P_i は G-素数だから $N(P_i)>1$ となり, $\mathbb Z$ での素因数分解の一意性より $N(P_i)=p^{f_i},\;f_i>0$ と書ける.

すると $p^2=p^{e_1f_1+\dots+e_gf_g}$ となるから $2=e_1f_1+\dots+e_gf_g$ が分かる.故に

$$\begin{cases} g = 1, \ e_1 = 1, \ f_1 = 2 \\ g = 1, \ e_1 = 2, \ f_1 = 1 \\ g = 2, \ e_1 = e_2 = f_1 = f_2 = 1 \end{cases}$$

のうちのどちらかである.

即ち,素数 p の $\mathbb{Z}[\sqrt{-1}]$ における素因数分解の仕方は次の 3 通りしかない.

- (1) $p = wP_1$, $N(P_1) = p^2$ (つまりこの場合 p 自体が G-素数)
- (2) $p = wP_1^2$
- (3) $p = wP_1P_2$, $P_1 \neq P_2$, $N(P_1) = N(P_2) = p$

これを踏まえて Fermat の二平方和定理を証明する.

【命題】 (Fermat の二平方和定理)

素数 $p \neq 2$ に対して

ある
$$a, b \in \mathbb{Z}$$
 が存在して $p = a^2 + b^2 \Longleftrightarrow p \equiv 1 \pmod{4}$

証明.

 (\Longleftrightarrow) 素数 p の $\mathbb{Z}[\sqrt{-1}]$ での分解を $p=wP_1^{e_1}\cdots P_g^{e_g}$ とする.このとき $P_1=a+b\sqrt{-1}$ と書けば $p^{f_1}=N(P_1)=a^2+b^2$ である.ここで,この分解は次の 3 通りしかない.

$$\begin{cases} g = 1, \ e_1 = 1, \ f_1 = 2 \quad (*) \\ g = 1, \ e_1 = 2, \ f_1 = 1 \\ g = 2, \ e_1 = e_2 = f_1 = f_2 = 1 \end{cases}$$

(*) の場合でないことを示せば $p = N(P_1) = a^2 + b^2$ が分かる.

証明.

そこで (*) の場合であると仮定する. つまり p は G-素数である.

 $p\equiv 1\pmod 4$ だから $t^2\equiv -1\pmod p$ なる $t\in \mathbb{Z}$ が取れる. 即ちある $m\in \mathbb{Z}$ により $t^2+1=pm$ と書ける. よって

$$pm = (t + \sqrt{-1})(t - \sqrt{-1})$$

である.故に $\mathbb{Z}[\sqrt{-1}]$ での素因数分解の一意性から $t+\sqrt{-1}$ か $t-\sqrt{-1}$ は p で割り切れなければならない.しかし明らかに $\frac{t\pm\sqrt{-1}}{p} \notin \mathbb{Z}[\sqrt{-1}]$ であるから矛盾する.

類体論とは

→ 代数的整数論の中で最強の理論 (個人の感想です)

先ほど $\mathbb{Z}[\sqrt{-1}]$ における p の分解は 3 通りしかないことを見た. より詳しく見ると,それは次のようになっている.

$p \mod 4$	e_i	f_i	g	分解の形	素数の例
0	_	_	_	_	_
1	1	1	2	$p = wP_1P_2, \ N(P_i) = p$ $p = wP_1^2, \ N(P_1) = p$	$5, 13, 17 \cdots$
2	2	1	1	$p = wP_1^2, \ N(P_1) = p$	2
3	1	2	1		$3,7,11\cdots$

このように素数の分解の仕方が mod で決まってしまうことがあり,これが類体論 (Class Field Theory) の例である.類体論の「類」とは mod n による剰余類のことである.

もう一つの例として環 $\mathbb{Z}[\zeta_7]$ を見る. (定義は後でする) この環では素数 p の分解は次のように mod 7 で判定できる.

$p \mod 7$	e_i	f_i	g	分解の形	例
0	6	1	1	$p = wP_1^6, \ N(P_i) = p$	7
1	1	1	6	$p = wP_1P_2\cdots P_6, \ N(P_i) = p$	29
2	1	3	2	$p = wP_1P_2, \ N(P_i) = p^3$	23
3	1	6	1	$p = wP_1, \ N(P_i) = p^6$	17
4	1	3	2	$p = wP_1P_2, \ N(P_i) = p^3$	67
5	1	6	1	$p = wP_1, \ N(P_i) = p^6$	19
6	1	2	3	$p = wP_1P_2P_3, \ N(P_i) = p^2$	13

 $\mod 7$ で 0 になる素数は勿論 7 しかないが, $e_i > 1$ となるのはこの唯一つの素数 7 のみである.

この唯一つの"例外" 7 を除いた $\{\bar{1},\bar{2},\bar{3},\bar{4},\bar{5},\bar{6}\} = (\mathbb{Z}/7\mathbb{Z})^{\times}$ は乗法で群になる.各元 $\bar{a} \in (\mathbb{Z}/7\mathbb{Z})^{\times}$ の位数 = $\lceil \bar{a} \rceil$ での f_i 」となる.(位数: 初めて $a^k \equiv 1 \pmod{7}$ となる k > 0)

$p \mod 7$	e_i	f_i	g	mod7での位数
1	1	1	6	1
2	1	3	2	3
3	1	6	1	6
4	1	3	2	3
5	1	6	1	6
6	1	2	3	2

こうしてこの表は $(\mathbb{Z}/7\mathbb{Z})^{\times}$ の構造から決定できる.

更に $f_i g = |(\mathbb{Z}/7\mathbb{Z})^{\times}| = 6$ である.

このような「素数 p の分解の仕方が $\operatorname{mod} n$ で判定できる」というのは常に起こる現象ではない.

例えば $\alpha \in \mathbb{C}$ を

$$x^6 + 3x^5 - 5x^3 + 3x + 1$$

の根としたとき,環 $\mathbb{Z}[\alpha]$ において素数 p の分解の仕方は,どのような正整数 n を使っても $\operatorname{mod} n$ で判定することは出来ないことが知られている.

(この環は $\mathbb{Q}(\sqrt[3]{2},\zeta_3)$ の整数環になる.)

https://math.stackexchange.com/questions/346699/

【定義】

 $\alpha \in \mathbb{C}$ が代数的数 \Longleftrightarrow ある $f \in \mathbb{Q}[x]$ が存在して $f(\alpha) = 0$.

【定義】

代数的数 α の最小多項式とは以下を満たす $f_{\alpha} \in \mathbb{Q}[x]$ である.

- (1) $f_{\alpha}(\alpha) = 0$.
- (2) f_{α} の最高次の係数が 1.
- (3) そのような多項式のうち次数が最小.

【定義】

代数的数 α が代数的整数 \iff $f_{\alpha} \in \mathbb{Z}[x]$.

【例】

$$\sqrt{2}$$
 は代数的整数. $f_{\sqrt{2}}=x^2-2$

【例】

$$\sqrt{-1}$$
 は代数的整数. $f_{\sqrt{-1}} = x^2 + 1$

【例】

$$rac{\sqrt{2}}{2}$$
 は代数的数だが代数的整数でない. $f_{rac{\sqrt{2}}{2}}=x^2-rac{1}{2}$

【例】

$$\frac{1+\sqrt{-3}}{2}$$
 は代数的整数. $f_{\frac{1+\sqrt{-3}}{2}}=x^2-x+1$

【定義】

$$\zeta_n := \exp\left(\frac{2\pi\sqrt{-1}}{n}\right).$$

【命題】

 ζ_n は代数的整数.

【定義】

K が代数体

 \iff $\mathbb{Q} \subset K \subset \mathbb{C}$ は部分体であって, $[K:Q] := \dim_{\mathbb{Q}} K < \infty$

【定義】

代数体 K に対して $\mathcal{O}_K := \{ \alpha \in K \mid \alpha \text{ は代数的整数 } \}$ を K の整数環という.これは環になる.

(環論知ってる人向け: \mathbb{Z} の K における整閉包のことである)

【定義】

K,L が体で $K\subset L$ が部分体のとき L を K の拡大体といい L/K と書く.

【定義】

L/K がアーベル拡大 $\iff L/K$ が Galois 拡大で $\operatorname{Gal}(L/K)$ がアーベル群.

【定義】

K の全ての有限次アーベル拡大の合併を K の最大アーベル拡大体といい K^{ab} と書く.

【定義】

 $\alpha_1, \cdots, \alpha_s$ を複素数とするとき

- (1) \mathbb{Q} と $\alpha_1, \cdots, \alpha_s$ を含む最小の体を $\mathbb{Q}(\alpha_1, \cdots, \alpha_s)$ と書く.
- (2) \mathbb{Z} と $\alpha_1, \cdots, \alpha_s$ を含む最小の環を $\mathbb{Z}[\alpha_1, \cdots, \alpha_s]$ と書く.

【命題】

- $(1) \ \mathbb{Z}[\alpha] = \{ f(\alpha) \mid f \in \mathbb{Z}[x] \}$
- (2) $\mathbb{Q}(\alpha) = \left\{ \frac{f(\alpha)}{g(\alpha)} \mid f, g \in \mathbb{Z}[x], g(\alpha) \neq 0 \right\}$
- (3) $\alpha_1, \dots, \alpha_s$ が代数的数のとき $\mathbb{Q}(\alpha_1, \dots, \alpha_s)$ は代数体.

【例】

 $\sqrt{-1}$ は代数的数だから $\mathbb{Q}(\sqrt{-1})$ は代数体・

$$\begin{split} \mathbb{Q}(\sqrt{-1}) &= \{a+b\sqrt{-1} \mid a,b \in \mathbb{Q}\} \\ \mathcal{O}_{\mathbb{Q}(\sqrt{-1})} &= \mathbb{Z}[\sqrt{-1}] = \{a+b\sqrt{-1} \mid a,b \in \mathbb{Z}\} \end{split}$$

【例】

 ζ_n は代数的数だから $\mathbb{Q}(\zeta_n)$ は代数体.

$$\mathcal{O}_{\mathbb{Q}(\zeta_n)}=\mathbb{Z}[\zeta_n]$$
 となる.更に $n=p$ が素数のときは

$$\mathbb{Q}(\zeta_p) = \{ a_{p-2}\zeta_p^{p-2} + \dots + a_1\zeta_p + a_0 \mid a_i \in \mathbb{Q} \}$$

$$\mathbb{Z}[\zeta_p] = \{ a_{p-2}\zeta_p^{p-2} + \dots + a_1\zeta_p + a_0 \mid a_i \in \mathbb{Z} \}$$

【例】

 $\sqrt{-3}$ は代数的数だから $\mathbb{Q}(\sqrt{-3})$ は代数体.

$$\mathbb{Q}(\sqrt{-3}) = \{a + b\sqrt{-3} \mid a, b \in \mathbb{Q}\}$$

$$\mathcal{O}_{\mathbb{Q}(\sqrt{-3})} = \mathbb{Z}\left[\frac{1 + \sqrt{-3}}{2}\right] = \left\{a + b\frac{1 + \sqrt{-3}}{2} \mid a, b \in \mathbb{Z}\right\}$$

【定義】

代数体 K のイデアルとは \mathcal{O}_K のイデアルのこと $(\mathcal{O}_K$ のイデアル = 部分 \mathcal{O}_K -加群 $\mathfrak{a}\subset\mathcal{O}_K)$

 $\mathfrak{a},\mathfrak{b}$ を K のイデアルとするとき,その積 \mathfrak{ab} を

$$\mathfrak{ab} := \{ \alpha_1 \beta_1 + \dots + \alpha_m \beta_m \mid \alpha_i \in \mathfrak{a}, \beta_i \in \mathfrak{b} \}$$

と定める. ab も K のイデアルとなる.

この積により K のイデアル全体は可換なモノイドとなる.

- 単位元は \mathcal{O}_K 自身をイデアルとみなしたもの
- 逆元は無いから群にはならない。

そこでイデアルをより一般化したものを考える.

【定義】

K の分数イデアルとは次を満たす部分 \mathcal{O}_K -加群 $\mathfrak{a}\subset K$ のこと ある $\gamma\in K$ が存在して $\gamma\mathfrak{a}\subset \mathcal{O}_K$.

イデアルは分数イデアルである. $(\gamma = 1$ と取れるから)

【定義】

 $\mathfrak{a},\mathfrak{b}$ を K の分数イデアルとするとき

$$\mathfrak{ab} := \{ \alpha_1 \beta_1 + \dots + \alpha_m \beta_m \mid \alpha_i \in \mathfrak{a}, \beta_i \in \mathfrak{b} \}$$
$$\mathfrak{a}^{-1} := \{ \gamma \in K \mid \gamma \mathfrak{a} \subset \mathcal{O}_K \}$$

 \mathfrak{ab} , \mathfrak{a}^{-1} も K の分数イデアルとなる. また $\mathfrak{aa}^{-1}=\mathcal{O}_K$.

K の分数イデアル全体 J_K は群をなす.

【定理】

K の分数イデアル $\mathfrak{a} \neq 0$ は

$$\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_g^{e_g} \ (\mathfrak{p}_i \ \mathrm{tall}$$
は相異なる素イデアル, $e_i \neq 0)$

と (順番を除いて)一意に書ける.

pprox ${\mathfrak a}$ がイデアルとなるのは各番号 i について $e_i>0$ となるときである.

【定義】

 $\alpha_i \in K$ に対して

$$(\alpha_1, \dots, \alpha_m) := \{\alpha_1 \beta_1 + \dots + \alpha_m \beta_m \mid \beta_i \in \mathcal{O}_K\}$$

は分数イデアルとなる.特に (α) の形の分数イデアルを単項分数イデアルという.

代数体 K の乗法群を K^{\times} とすると,群準同型写像が

$$F \colon K^{\times} \longrightarrow J_K$$

 $\alpha \longmapsto (\alpha)$

により定まる.これで数 $\alpha \in K^{\times}$ を分数イデアルと"みなす".

この意味で分数イデアルは数を拡張したものと考える.

【例】

代数体 $\mathbb{Q}(\sqrt{-5})$ を考える. $\mathcal{O}_{\mathbb{Q}(\sqrt{-5})}=\mathbb{Z}[\sqrt{-5}]$ である.この整数環では

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

となり,6 は既約元の積として 2 通りに書ける.(つまり $\mathbb{Z}[\sqrt{-5}]$ は UFD ではなく"素因数分解の一意性"はない) これらの数を単項イデアルとみなして素イデアル分解すると

$$(2) = (2, 1 + \sqrt{-5})^{2}$$

$$(3) = (3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5})$$

$$(1 + \sqrt{-5}) = (2, 1 + \sqrt{-5})(3, 1 + \sqrt{-5})$$

$$(1 - \sqrt{-5}) = (2, 1 + \sqrt{-5})(3, 1 - \sqrt{-5})$$

【例】

つまり6はイデアルとして考えれば

$$(6) = (2, 1 + \sqrt{-5})^2 (3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5})$$

と素イデアル分解できる.

このように一般の整数環では素因数分解ができるとは限らないが、イデアルに拡張して考えることで分解ができるようになる.

数とイデアルの"ずれ"の情報として,準同型 $\alpha \mapsto (\alpha)$ の核と余核を考えることが多い.

- (1) 核を E_K と書き K の単数群という.
- (2) 余核を Cl_K と書き K のイデアル類群という.

 E_K, Cl_K については次の定理が知られている.

【定理】 (Dirichlet の単数定理)

$$E_K \cong (\mathbb{Z}/w_K\mathbb{Z}) \times \mathbb{Z}^{r_K}$$
.

(記号の説明は省略)

【定理】

 Cl_K は有限群である.

 $h_K := |Cl_K|$ を K の類数という.

$$h_K = 1 \iff J_K = \{(\alpha) \mid \alpha \in K\}$$
 $\iff \mathcal{O}_K$ は PID(単項イデアル整域) $\iff \mathcal{O}_K$ は UFD(一意分解整域)

※ PID: 全てのイデアルが単項イデアルになる整域 UFD: 全ての元が既約元の積に一意に分解できる整域 一般に PID \Longrightarrow UFD

よって「 $h_K=1 \Longleftrightarrow K$ では素因数分解が一意にできる」となり,例えば $h_{\mathbb{Q}}=h_{\mathbb{Q}(\sqrt{-1})}=1$, $h_{\mathbb{Q}(\sqrt{-5})}=2$ である.

【定義】

 K/\mathbb{Q} を代数体,p を素数とする.p を含む最小の K のイデアル (p) を K で

$$(p) = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_g^{e_g}$$

と素イデアル分解する.このとき $g \leq [K:\mathbb{Q}]$ となることが知られている.

- (1) p は L/K で完全分解する \iff $g = [K:\mathbb{Q}]$
- (2) p は L/K で分岐する \Longleftrightarrow ある i について $e_i > 1$
- (3) p は L/K で不分岐 \iff 全ての i について $e_i=1$

【定義】

L/K を代数体, $\mathfrak p$ を K の素イデアルとする. $\mathfrak p$ を含む最小の L のイデアルを $\mathfrak p\mathcal O_L$ と書く.これを L で

$$\mathfrak{p}\mathcal{O}_L = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_g^{e_g}$$

と素イデアル分解する.このとき $g \leq [L:K]$ となることが知られている.

- (1) \mathfrak{p} は L/K で完全分解する $\Longleftrightarrow g = [L:K]$
- (2) \mathfrak{p} は L/K で分岐する \Longleftrightarrow ある i について $e_i > 1$
- (3) \mathfrak{p} は L/K で不分岐 \Longleftrightarrow 全ての i について $e_i=1$

まず次のような定義をしてみる.

【定義】

n>2 を整数, $H\subset (\mathbb{Z}/n\mathbb{Z})^{\times}$ を部分群とする. Galois 拡大 K/\mathbb{Q} が H の類体 \iff 素数 p に対して次が成り立つ

 $ar{p} \in H \Longleftrightarrow p$ は K/\mathbb{Q} で完全分解する

このとき考えられる問題として

- (1) 任意の H に対して類体は存在するだろうか?
- (2) 類体となるのはどのような代数体だろうか?

まず代数体 $\mathbb{Q}(\zeta_n)$ については次のことが知られている.

【定理】

n > 2を整数とするとき

- (1) $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$. (特に $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ はアーベル拡大)
- (2) $p \mid n \Longleftrightarrow p$ は $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ で分岐する.
- (3) $p\equiv 1\pmod n \iff p$ は $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ で完全分解する。 より一般に, \bar{p} の $(\mathbb{Z}/n\mathbb{Z})^{\times}$ での位数を $f,\ \varphi(n)=fg$ とすれば p は $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ で g 個に分解する.

特に $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ は $1 \subset (\mathbb{Z}/n\mathbb{Z})^{\times}$ の類体である.

例として $\mathbb{Q}(\zeta_7)/\mathbb{Q}$ を考えると次の表になる. $(\varphi(7)=6)$

$p \mod 7$	e_i	f	g	分解の形	例
0	6	1	1	$(p) = \mathfrak{p}_1^6$	7
1	1	1	6	$(p) = \mathfrak{p}_1 \mathfrak{p}_2 \cdots \mathfrak{p}_6$	$29, 43, \cdots$
2	1	3	2	$(p) = \mathfrak{p}_1 \mathfrak{p}_2$	$2, 23, \cdots$
3	1	6	1	$(p) = \mathfrak{p}_1$	$3, 17, \cdots$
4	1	3	2	$(p) = \mathfrak{p}_1 \mathfrak{p}_2$	$11,67,\cdots$
5	1	6	1	$(p) = \mathfrak{p}_1$	$5, 19, \cdots$
6	1	2	3	$(p) = \mathfrak{p}_1 \mathfrak{p}_2 \mathfrak{p}_3$	$13,41,\cdots$

より一般に,部分群 $H\subset (\mathbb{Z}/n\mathbb{Z})^{\times}$ が与えられたとき.Galois 理論により部分群 $(\mathbb{Z}/n\mathbb{Z})^{\times}\supset H\supset 1$ に対応する部分体 $\mathbb{Q}\subset K\subset \mathbb{Q}(\zeta_n)$ を取る.このとき

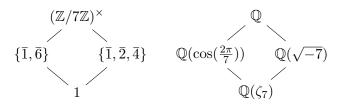
 $ar p \in H \Longleftrightarrow p$ は $K/\mathbb Q$ で完全分解する

となる.(即ちこの $K/\mathbb Q$ は H の類体である.) より一般に, $\bar p$ の $(\mathbb Z/n\mathbb Z)^\times/H$ での位数を $f, \ |(\mathbb Z/n\mathbb Z)^\times/H| = fg$ とすれば p は $K/\mathbb Q$ で g 個に分解する.従って

任意の H に対して類体は存在するだろうか? ightarrow YES

【例】

n=7 とする. $(\mathbb{Z}/n\mathbb{Z})^{\times}=\{\bar{1},\bar{2},\bar{3},\bar{4},\bar{5},\bar{6}\}$ の部分群は4 つ.Galois 理論による対応する体は次の通り.



 $\mathbb{Q}(\sqrt{-7})/\mathbb{Q}$ は $\{\bar{1},\bar{2},\bar{4}\}$ の類体.

 $\mathbb{Q}(\cos(\frac{2\pi}{7}))/\mathbb{Q}$ は $\{\bar{1},\bar{6}\}$ の類体.

 $\mathbb{Q}(\cos(\frac{2\pi}{7}))/\mathbb{Q}$ では次の表になる.

$p \mod 7$	e_i	f_i	g	分解の形	例
0	3	1	1	$(p) = \mathfrak{p}_1^3$	7
1	1	1	3	$(p) = \mathfrak{p}_1 \mathfrak{p}_2 \mathfrak{p}_3$	$29, 43, \cdots$
2	1	3	1	$(p) = \mathfrak{p}_1$	$2, 23, \cdots$
3	1	3	1	$(p) = \mathfrak{p}_1$	$3, 17, \cdots$
4	1	3	1	$(p) = \mathfrak{p}_1$	$11,67,\cdots$
5	1	3	1	$(p) = \mathfrak{p}_1$	$5, 19, \cdots$
6	1	1	3	$(p) = \mathfrak{p}_1 \mathfrak{p}_2 \mathfrak{p}_3$	$13,41,\cdots$

つまり $p\equiv 1,6\pmod 7 \Longleftrightarrow p$ は $\mathbb{Q}(\cos(\frac{2\pi}{7}))/\mathbb{Q}$ で完全分解する

 $\mathbb{Q}(\sqrt{-7})/\mathbb{Q}$ では次の表になる.

$p \mod 7$	e_i	f_i	g	分解の形	例
0	2	1	1	$(p) = \mathfrak{p}_1^2$	7
1	1	1	2	$(p) = \mathfrak{p}_1 \mathfrak{p}_2$	$29, 43, \cdots$
2	1	1	2	$(p) = \mathfrak{p}_1 \mathfrak{p}_2$	$2, 23, \cdots$
3	1	2	1	$p) = \mathfrak{p}_1$	$3, 17, \cdots$
4	1	1	2	$(p) = \mathfrak{p}_1 \mathfrak{p}_2$	$11,67,\cdots$
5	1	2	1	$(p) = \mathfrak{p}_1$	$5, 19, \cdots$
6	1	2	1	$p) = \mathfrak{p}_1$	$13,41,\cdots$

つまり $p\equiv 1,2,4\pmod 7 \Longleftrightarrow p$ は $\mathbb{Q}(\sqrt{-7})/\mathbb{Q}$ で完全分解する

 $\mathrm{Gal}(K/\mathbb{Q})\cong (\mathbb{Z}/n\mathbb{Z})^{ imes}/H$ であるから \mathbb{Q} の類体は \mathbb{Q} の有限次アーベル拡大である.

ところが実は逆,即ち \mathbb{Q} の有限次アーベル拡大は類体であることが次の定理から分かる.

【定理】 (Kronecker-Weber の定理)

任意の有限次アーベル拡大 K/\mathbb{Q} に対して,ある正整数 n が存在して $K\subset \mathbb{Q}(\zeta_n)$

K に対してこの n を取って,K に対応する部分群 $H \subset (\mathbb{Z}/n\mathbb{Z})^{\times}$ を取れば K/\mathbb{Q} は H の類体である.

つまり,類体論とは要するに有限次アーベル拡大の理論ということになる.

有理数体の場合と同様の定理が一般の代数体に対しても成り立つ.

まず有理数体の場合でいう $(\mathbb{Z}/n\mathbb{Z})^{\times}$ に当たる群として $Cl_K(\mathfrak{m})$ を定義する.但し,一般の場合は事情が複雑になるため,以下では K は総虚であるとする.

(代数体 K が総虚 = 準同型 $K \to \mathbb{R}$ が存在しない)

【定義】

K を代数体, \mathfrak{m} を K のイデアルとする.

$$J_K(\mathfrak{m}) := \{\mathfrak{a} \subset K \mid \mathfrak{a}$$
 は分数イデアルで \mathfrak{m} と素 $\}$ $P_K(\mathfrak{m}) := \{(\alpha) \mid \alpha \in K^{ imes}, \ \alpha \equiv 1 \pmod{\mathfrak{m}}\}$ $Cl_K(\mathfrak{m}) := I_K(\mathfrak{m})/P_K(\mathfrak{m})$

このとき有理数体の場合の $\mathbb{Q}(\zeta_n)$ に当たる体 $K(\mathfrak{m})$ が存在する.

【定理】

有限次アーベル拡大 $K(\mathfrak{m})/K$ が存在して以下が成り立つ.

- (1) $\operatorname{Gal}(K(\mathfrak{m})/K) \cong Cl_K(\mathfrak{m}).$
- (2) $\mathfrak{p} \mid \mathfrak{m} \Longleftrightarrow \mathfrak{p}$ は $K(\mathfrak{m})/K$ で分岐する.
- (3) $\bar{\mathfrak{p}}=1$ in $Cl_K(\mathfrak{m})\Longleftrightarrow \mathfrak{p}$ は $K(\mathfrak{m})/K$ で完全分解する。 より一般に, \mathfrak{p} の $Cl_K(\mathfrak{m})$ での位数を $f,\;|Cl_K(\mathfrak{m})|=fg$ とすれば \mathfrak{p} は $K(\mathfrak{m})/K$ で g 個に分解する.

特に $\mathfrak{m}:=\mathcal{O}_K$ の場合の $H:=K(\mathcal{O}_K)$ を K の Hilbert 類体,もしくは絶対類体という.

 $\mathfrak{p} \mid \mathcal{O}_K \Longleftrightarrow \mathfrak{p}$ は H/K で分岐する.

だから,H/K では全ての素イデアルが不分岐である.

【定理】 (単項化定理)

 \mathfrak{a} を K のイデアルとするとき $\mathfrak{a}\mathcal{O}_H$ は単項イデアル.

【定理】 (分解定理)

K の素イデアル \mathfrak{p} について

 \mathfrak{p} が H/K で完全分解する $\Longleftrightarrow \mathfrak{p}$ は単項イデアル

 K_0/\mathbb{Q} を代数体として, K_{n+1} を K_n の絶対類体とすれば代数体の上昇列 $K_0\subset K_1\subset K_2\subset \cdots$ が得られる.(類体塔という)

【問】 (類体塔問題)

任意のn について $K_n \subsetneq K_{n+1}$ となるような代数体 K_0 は存在するか?

【定理】 (Golod-Shafarevich の定理 (1964))

存在する. 例えば $K_0 = \mathbb{Q}(\sqrt{-5\cdot 11\cdot 461})$ ならよいらしい.

応用例 (1) 整数論

【命題】

素数 $p \neq 2.5$ に対して

ある $a,b \in \mathbb{Z}$ が存在して $p = a^2 + 5b^2 \iff p \equiv 1,9 \pmod{20}$

 Fermat の二平方和定理の場合と同様に $K:=\mathbb{Q}(\sqrt{-5})$ とすれば

$$a^{2} + 5b^{2} = (a + b\sqrt{-5})(a - b\sqrt{-5})$$

 $K\subset\mathbb{Q}(\zeta_n)$ となる最小の n は n=20 であり,K に対応する $\mathrm{Gal}(\mathbb{Q}(\zeta_{20})/\mathbb{Q})\cong (\mathbb{Z}/20\mathbb{Z})^{ imes}$ の部分群は $\{\bar{1},\bar{3},\bar{7},\bar{9}\}$ である.故に

 K/\mathbb{Q} で p が完全分解する $\iff p \equiv 1, 3, 7, 9 \pmod{20}$

ここでの「 K/\mathbb{Q} で p が完全分解する」とは

$$(p) = \mathfrak{p}_1\mathfrak{p}_2$$
 $(\mathfrak{p}_i \ \mathsf{lt} \ K \ \mathsf{os} \ \mathsf{x} \ \mathsf{f} \ \mathsf{r} \ \mathsf{r} \mathsf{r} \mathsf{r} \mathsf{r} \mathsf{r}, \ \mathfrak{p}_1 \neq \mathfrak{p}_2)$

と書けることである.ここでもし $\mathfrak{p}_1,\mathfrak{p}_2$ が単項イデアルならば, つまり

$$\mathfrak{p}_1 = (a_1 + b_1 \sqrt{-5}), \quad \mathfrak{p}_2 = (a_2 + b_2 \sqrt{-5})$$

と書ければ

$$(p) = (a_1 + b_1\sqrt{-5})(a_2 + b_2\sqrt{-5})$$

となるから数として

$$\alpha p = (a_1 + b_1 \sqrt{-5})(a_2 + b_2 \sqrt{-5})$$

であり、Fermat の二平方和定理の時と同様の議論ができる.

ところが $K=\mathbb{Q}(\sqrt{-5})$ には単項でないイデアルが存在する.つまり p が完全分解する条件だけでは足りなくて,分解後の素イデアルが単項になる条件まで考慮する必要がある.

そこで絶対類体を応用する.H/Kを絶対類体とすれば

 \mathfrak{p} が単項イデアル $\Longleftrightarrow \mathfrak{p}$ が H/K で完全分解する

である. $H=K(\sqrt{-1})=\mathbb{Q}(\sqrt{-5},\sqrt{-1})$ であることが知られており, H/\mathbb{Q} はアーベル拡大である. $H\subset \mathbb{Q}(\zeta_n)$ となる最小の n も n=20 であり,H に対応する $\mathrm{Gal}(\mathbb{Q}(\zeta_{20})/\mathbb{Q})\cong (\mathbb{Z}/20\mathbb{Z})^{\times}$ の部分群は $\{\bar{1},\bar{9}\}$ である.

以上を踏まえて

【命題】

素数 $p \neq 2,5$ に対して

ある
$$a,b \in \mathbb{Z}$$
 が存在して $p = a^2 + 5b^2 \Longleftrightarrow p \equiv 1,9 \pmod{20}$

証明.

$$p=a^2+5b^2$$
と書ける
$$\iff p=(a+b\sqrt{-5})(a-b\sqrt{-5})$$
 $\iff K/\mathbb{Q}$ で $p=\mathfrak{p}_1\mathfrak{p}_2$ と完全分解, $\mathfrak{p}_1,\mathfrak{p}_2$ が単項イデアル $\iff K/\mathbb{Q}$ で $p=\mathfrak{p}_1\mathfrak{p}_2$ と完全分解, H/K で $\mathfrak{p}_1,\mathfrak{p}_2$ が完全分解 $\iff p$ は H/\mathbb{Q} で完全分解 $\iff p\equiv 1,9\pmod{20}$

【命題】

 $\mod 20$ で 3 か 7 になる二つの素数 p,q に対して,ある $a,b \in \mathbb{Z}$ が存在して $pq=a^2+5b^2$.

証明.

$$p \equiv 3,7 \pmod{20}$$
 だから $K := \mathbb{Q}(\sqrt{-5})$ とすると K/\mathbb{Q} で

$$(p)=\mathfrak{p}_1\mathfrak{p}_2$$
 $(\mathfrak{p}_i$ は非単項素イデアル, $\mathfrak{p}_1
eq \mathfrak{p}_2)$

 $(q)=\mathfrak{q}_1\mathfrak{q}_2$ も同様.このとき $pq=\mathfrak{p}_1\mathfrak{q}_1\mathfrak{p}_2\mathfrak{q}_2$ であるが $h_K=2$ だから $\mathfrak{p}_1\mathfrak{q}_1,\mathfrak{p}_2\mathfrak{q}_2$ は単項イデアルである. $\mathfrak{p}_1\mathfrak{q}_1=(a+b\sqrt{-5})$ と書けば $\mathfrak{p}_2\mathfrak{q}_2=(a-b\sqrt{-5})$ であり $pq=a^2+5b^2$ となる.

【命題】

素数 $p \neq 2,13$ に対して「ある $a,b \in \mathbb{Z}$ が存在して $p=a^2+26b^2$ と書ける」かどうかは mod では判定できない.

証明.

 $K:=\mathbb{Q}(\sqrt{-26})$ として H/K を Hilbert 類体とすると

$$p=a^2+26b^2$$
と書ける

 $\iff K/\mathbb{Q}$ で $p = \mathfrak{p}_1\mathfrak{p}_2$ と完全分解 $\mathfrak{p}_1,\mathfrak{p}_2$ が単項イデアル

 $\iff K/\mathbb{Q}$ で $p = \mathfrak{p}_1\mathfrak{p}_2$ と完全分解,H/K で $\mathfrak{p}_1,\mathfrak{p}_2$ が完全分解

 $\iff p$ は H/\mathbb{Q} で完全分解

となるが, H/\mathbb{Q} はアーベル拡大でないことが分かる.よって pが H/\mathbb{Q} で完全分解するかを mod で判定はできない.

【命題】

素数 $p \neq 2,13$ に対して「ある $a,b \in \mathbb{Z}$ が存在して $p=a^2+26b^2$ と書ける」かどうかは mod では判定できない.

証明.

 $K:=\mathbb{Q}(\sqrt{-26})$ として H/K を Hilbert 類体とすると

$$p=a^2+26b^2$$
と書ける

 $\iff K/\mathbb{Q}$ で $p = \mathfrak{p}_1\mathfrak{p}_2$ と完全分解 $\mathfrak{p}_1,\mathfrak{p}_2$ が単項イデアル

 $\iff K/\mathbb{Q}$ で $p = \mathfrak{p}_1\mathfrak{p}_2$ と完全分解,H/K で $\mathfrak{p}_1,\mathfrak{p}_2$ が完全分解

 $\iff p$ は H/\mathbb{Q} で完全分解

となるが, H/\mathbb{Q} はアーベル拡大でないことが分かる.よって pが H/\mathbb{Q} で完全分解するかを mod で判定はできない.

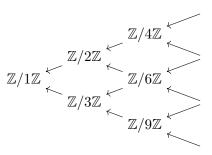
(ここからは難しい話になります)

類体論とは要するにアーベル拡大の理論であり,最大アーベル拡大のガロア群 $\mathrm{Gal}(K^{\mathrm{ab}}/K)$ を簡単な群で"近似"するという形で述べることができる.

【例】 (0 次元類体論 = 有限体の類体論)

n>0 に対して $\mathbb F$ の n 次拡大体 K は唯一つで $\mathrm{Gal}(K/\mathbb F)\cong \mathbb Z/n\mathbb Z$ である. よって

$$\operatorname{Gal}(\mathbb{F}^{\operatorname{ab}}/\mathbb{F}) \cong \widehat{\mathbb{Z}} := \lim(\mathbb{Z}/n\mathbb{Z}).$$



【例】 (0 次元類体論 = 有限体の類体論)

ℙを有限体とする.

n>0 に対して $\mathbb F$ の n 次拡大体 K は唯一つで $\mathrm{Gal}(K/\mathbb F)\cong \mathbb Z/n\mathbb Z$ である.よって

$$\operatorname{Gal}(\mathbb{F}^{\operatorname{ab}}/\mathbb{F}) \cong \widehat{\mathbb{Z}} := \lim(\mathbb{Z}/n\mathbb{Z}).$$

無限次元 Galois 理論により次の一対一対応が得られる.

 $\mathrm{Gal}(\mathbb{F}^{\mathrm{ab}}/\mathbb{F})$ の開部分群 $\stackrel{1:1}{\longleftrightarrow}$ \mathbb{F} の有限次アーベル拡大

【例】 (0 次元類体論)

普遍性により得られる準同型を $h\colon \mathbb{Z}\to \widehat{\mathbb{Z}}$ とする. $U\subset \widehat{\mathbb{Z}}$ を開部分群とするとき $h^{-1}(U)\subset \mathbb{Z}$ は指数有限部分群である. これにより次の一対一対応が得られる.

 $\widehat{\mathbb{Z}}$ の開部分群 $\stackrel{1:1}{\longleftrightarrow} \mathbb{Z}$ の指数有限部分群

 $ho_{\mathbb{F}}$ を合成 $\mathbb{Z} \xrightarrow{h} \widehat{\mathbb{Z}} \cong \operatorname{Gal}(\mathbb{F}^{\mathrm{ab}}/\mathbb{F})$ とする.

 \mathbb{F} の有限次アーベル拡大 $\stackrel{1:1}{\longleftrightarrow}$ $\operatorname{Gal}(\mathbb{F}^{\operatorname{ab}}/\mathbb{F})$ の開部分群 $\stackrel{1:1}{\longleftrightarrow}$ $\widehat{\mathbb{Z}}$ の開部分群 $\stackrel{1:1}{\longleftrightarrow}$ \mathbb{Z} の指数有限部分群

【定義】

K が 0 次元局所体 $\Longleftrightarrow K$ が有限体

【定義】

n>0 のとき,K が n 次元局所体 $\iff K$ は完備離散付値体かつその剰余体が (n-1) 次元局所体.

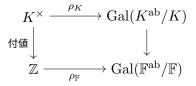
【例】

p 進数体 \mathbb{Q}_p やその有限次拡大体は 1 次元局所体.

【定理】 (1次元局所類体論)

1 次元局所体 K に対して,連続準同型 $ho_K\colon K^ imes o \mathrm{Gal}(K^\mathrm{ab}/K)$ が存在して

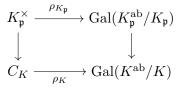
- (1) ρ_K により「K の有限次アーベル拡大」と「 K^{\times} の指数有限開部分群」が一対一に対応する.
- (2) K の剰余体が F のとき次が可換



【定理】 (1 次元大域類体論)

代数体 K に対して,イデール類群と呼ばれる位相群 C_K と連続準同型 $ho_K\colon C_K o \mathrm{Gal}(K^{\mathrm{ab}}/K)$ が構成できて

- (1) ho_K により「K の有限次アーベル拡大」と「 C_K の指数有限開部分群」が一対一に対応する.
- (2) K の素点 \mathfrak{p} に対して次が可換となる.



【命題】

K のイデアル $\mathfrak m$ に対して,ある部分群 $C_K^{\mathfrak m} \subset C_K$ が存在して $C_K/C_K^{\mathfrak m} \cong Cl(\mathfrak m)$ となる.更に次の一対一対応が得られる.

C_Kの指数有限開部分群

 $\stackrel{\text{1:1}}{\longleftrightarrow} C_K$ の部分群であって,ある $\mathfrak m$ に対する $C_K^{\mathfrak m}$ を含むもの

 $\rho_K \colon C_K \to \operatorname{Gal}(K^{\mathrm{ab}}/K)$ により

有限次アーベル拡大 $L/K \stackrel{1:1}{\longleftrightarrow} C_K$ の指数有限開部分群 $\stackrel{1:1}{\longleftrightarrow} Cl(\mathfrak{m}) \cong C_K/C_K^{\mathfrak{m}}$ の部分群

という一対一対応が得られることになる.この対応で $1 \subset Cl(\mathfrak{m})$ に対応するのが $K(\mathfrak{m})/K$ である.

応用例 (2) n 乗剰余の相互法則 ------

整数論における重要な定理として「平方剰余の相互法則」という ものがある.

平方剰余とは要するに体 \mathbb{F}_p の中に平方根があることをいう.

【定義】

p を奇素数, $a \in \mathbb{Z}$ が p と互いに素とするとき

$$\left(\frac{a}{p}\right) := \left\{ \begin{array}{ll} 1 & (\exists x \in \mathbb{Z}, x^2 \equiv a \pmod p) \\ -1 & (それ以外) \end{array} \right.$$

と定める. (Legendre 記号という)

また
$$\left(\frac{a}{p}\right)=1$$
のとき a は p を法として平方剰余であるという.

このように定めると a の部分が積と可換になる.つまり

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

そこでより一般に、 $b=p_1\cdots p_s$ が奇数で a と b が互いに素のとき

$$\left(\frac{a}{b}\right) := \left(\frac{a}{p_1}\right) \cdots \left(\frac{a}{p_s}\right)$$

と定める. (Jacobi 記号という)

【定理】 (平方剰余の相互法則)

a,b を互いに素な奇数とするとき

$$\left(\frac{a}{b}\right)\left(\frac{b}{a}\right) = (-1)^{\frac{a-1}{2}\frac{b-1}{2}}(-1)^{\frac{\operatorname{sgn}(a)-1}{2}\frac{\operatorname{sgn}(b)-1}{2}}$$

また

$$\left(\frac{-1}{b}\right) = (-1)^{\frac{b-1}{2}}, \quad \left(\frac{2}{b}\right) = (-1)^{\frac{b^2-1}{8}}$$

つまり $\left(\frac{a}{b}\right)$ が分かれば $\left(\frac{b}{a}\right)$ も分かる.そこで「平方」ではなく,より一般の n 乗剰余についても相互法則は成り立つか?という問題が生まれる.これは類体論 (Artin の相互律) により解決された.

K を代数体, $\mu_n:=\{x\in\mathbb{C}\mid x^n=1\}$ として $\mu_n\subset K$ とする. L/K, $M/K_\mathfrak{p}$ を有限次アーベル拡大とするとき

$$(-, L/K) \colon C_K \xrightarrow{\rho_K} \operatorname{Gal}(K^{\mathrm{ab}}/K) \xrightarrow{\text{like}} \operatorname{Gal}(L/K)$$

$$(-, M/K_{\mathfrak{p}}) \colon K_{\mathfrak{p}}^{\times} \xrightarrow{\rho_{K_{\mathfrak{p}}}} \operatorname{Gal}(K_{\mathfrak{p}}^{\operatorname{ab}}/K_{\mathfrak{p}}) \xrightarrow{\operatorname{\sharp ll} \mathbb{R}} \operatorname{Gal}(M/K_{\mathfrak{p}})$$

とすると次は可換である. $(L_{\mathfrak{p}}:=K_{\mathfrak{p}}L)$

$$K_{\mathfrak{p}}^{\times} \xrightarrow{\rho_{K_{\mathfrak{p}}}} \operatorname{Gal}(K_{\mathfrak{p}}^{\operatorname{ab}}/K_{\mathfrak{p}}) \longrightarrow \operatorname{Gal}(L_{\mathfrak{p}}/K_{\mathfrak{p}})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$C_{K} \xrightarrow{\rho_{K}} \operatorname{Gal}(K^{\operatorname{ab}}/K) \longrightarrow \operatorname{Gal}(L/K)$$

また
$$K$$
のイデール α に対して $(\alpha, L/K) = \prod_{\mathfrak{p}} (\alpha_{\mathfrak{p}}, L_{\mathfrak{p}}/K_{\mathfrak{p}})$.

$$a,b \in K_{\mathfrak{p}}^{\times}$$
 に対して $\left(rac{a,b}{\mathfrak{p}}
ight) \in \mu_n$ を

$$(a, K_{\mathfrak{p}}(\sqrt[n]{b})/K_{\mathfrak{p}})\sqrt[n]{b} = \left(\frac{a, b}{\mathfrak{p}}\right)\sqrt[n]{b}$$

により定める. (Hilbert 記号という)

 $\mathfrak{p} \not\mid n$, $a \in U_{\mathfrak{p}}$, $\pi \in K_{\mathfrak{p}}$ を素元としたとき

$$\left(\frac{a}{\mathfrak{p}}\right) := \left(\frac{\pi, a}{\mathfrak{p}}\right)$$

と定義する. これは

$$\left(\frac{a}{\mathfrak{p}}\right) = 1 \Longleftrightarrow x^n \equiv a \pmod{\mathfrak{p}}$$

を満たす.

より一般に n と素なイデアル $\mathfrak{b} = \mathfrak{p}_1 \cdots \mathfrak{p}_s$ に対して

$$\left(\frac{a}{\mathfrak{b}}\right) := \left(\frac{a}{\mathfrak{p}_1}\right) \cdots \left(\frac{a}{\mathfrak{p}_s}\right)$$

と定めて、 $\mathfrak{b}=(b)$ のとき

$$\left(\frac{a}{b}\right) := \left(\frac{a}{\mathfrak{b}}\right)$$

と書く.

【定理】 (n 乗剰余の相互法則)

 $a,b \in K^{\times}$ を互いに素で、更に n とも素なとき

$$\left(\frac{a}{b}\right)\left(\frac{b}{a}\right)^{-1} = \prod_{\mathfrak{p}\mid n\infty} \left(\frac{a,b}{\mathfrak{p}}\right)$$

【定理】

ZFC において、PID は UFD である.

【問】

この定理は ZF で証明できるか?

→ 答え: No

→ このことは,なんと類体論を応用することで証明できる.

Wilfrid Hodges, Läuchli's algebraic closure of Q, Math. Proc. Camb. Phil. Soc. 79 (1976), 289–297

N を ZF の推移的モデル, $L \in N$ を体とする.

【定義】

L 上の n 項関係 R が support S を持つ

 \iff $S\subset L$ は有限集合で,自己同型 $\sigma\colon L\to L$ が

$$x \in S$$
 ならば $\sigma(x) = x$

を満たすならば $\sigma(R) = R$.

【例】

 $\mathfrak{a}=(\alpha_1,\cdots,\alpha_s)$ を代数体 L のイデアルとして 1 項関係 \mathfrak{a} を考えると,これは support $\{\alpha_1,\cdots,\alpha_s\}$ を持つ.

【定義】

Lが N-symmetric

 \iff R が L 上の n 項関係で $R \in N$ ならば,R は support S を持つ.

【定理】

ZF の推移的モデル N で次を満たすものが存在する.

 \mathbb{Q} の代数閉包 L で N-symmetric なものが存在する.

PLOTKIN and JACOB MANITCEL, Generic embeddings, J. Symbolic Logic 34 (1969), 388–394.

以下,そのような N と L を取り固定する.

 $K_0 \subset L$ を Golod-Shafarevich の定理を満たす代数体とする.

$$K_{n+1}/K_n$$
 を K_n の絶対類体, $\mathcal{O}_n:=\mathcal{O}_{K_n}$ として $K:=\bigcup K_n$, $\mathcal{O}:=\bigcup \mathcal{O}_n$.

定義の絶対性から $K_n, K, \mathcal{O}_n, \mathcal{O} \in N$ が分かる.

【命題】 (in N)

O は (体でない) 単項イデアル整域である.

証明.

 $\mathfrak{a}\subset \mathcal{O}$ をイデアルとすれば,一項関係 \mathfrak{a} は support $S\subset \mathcal{O}$ を持つことが分かる.

S は有限集合だから,ある番号 n が存在して $S \subset \mathcal{O}_n$ となる.

このとき $\mathfrak{a}=\mathcal{O}(\mathfrak{a}\cap\mathcal{O}_{n+1})$ が分かる.単項化定理により K_{n+1} のイデアル $\mathfrak{a}\cap\mathcal{O}_{n+1}$ は K_{n+2} で単項イデアルになる.即ち

$$\mathcal{O}_{n+2}(\mathfrak{a}\cap\mathcal{O}_{n+1})=x\mathcal{O}_{n+2}$$

と書ける.このとき

$$\mathfrak{a} = \mathcal{O}(\mathfrak{a} \cap \mathcal{O}_{n+1}) = \mathcal{O}\mathcal{O}_{n+2}(\mathfrak{a} \cap \mathcal{O}_{n+1}) = \mathcal{O}(x\mathcal{O}_{n+2}) = x\mathcal{O}$$

【命題】 (in N)

O は素元を持たない.

証明.

素元 $p \in \mathcal{O}$ が存在すると仮定する.ある番号 n が存在して $p \in \mathcal{O}_n$ である.このとき $(p) = p\mathcal{O}_n$ は K_n の素イデアルである.

分解定理より (p) は K_{n+1}/K_n で完全分解する.即ち K_{n+1} の素イデアル \mathfrak{p}_i が存在して

$$(p) = \mathfrak{p}_1 \dots \mathfrak{p}_s \ (s = [K_{n+1} : K_n] > 1)$$

となる. $\alpha_i \in \mathfrak{p}_i \setminus (p)$ を取れば $p \mid \alpha_1 \cdots \alpha_s$ かつ $p \nmid \alpha_i$ となり p が素元でなく矛盾する.

以上により次の定理が分かった.

【定理】

ZF の推移的モデル N で次を満たすものが存在する.

体でない,素元を持たない単項イデアル整域が存在する.

【定理】

ZF において「PID は UFD」は証明できない.