モナド

alg-d

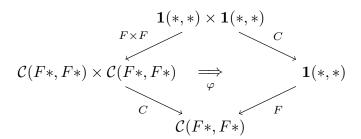
http://alg-d.com/math/category/

2016年5月20日

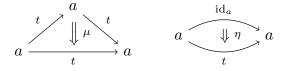
この PDF では \mathcal{C} を strict 2-category とする .

定義. lax 2-functor ${f 1} \longrightarrow {\cal C}$ をモナドという. また ${\cal C}^{\rm co}$ でのモナド ,即ち oplax 2-functor ${f 1} \longrightarrow {\cal C}$ をコモナドという.

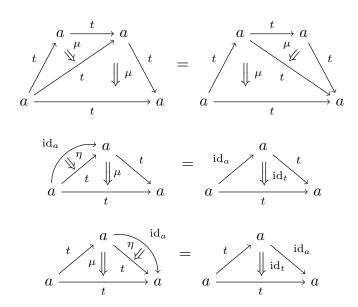
 $F: \mathbf{1} \longrightarrow \mathcal{C}$ をモナドとする . F は \mathcal{C} の 2-morphism $\psi \colon \mathrm{id}_{F*} \Longrightarrow F(\mathrm{id}_*)$ と , 次の自然変換 φ を与えられているのであった .



故にモナド $F: \mathbf{1} \longrightarrow \mathcal{C}$ は対象 a := F* ,1-morphism $t := F(\mathrm{id}_*): a \longrightarrow a$,2-morphism $\mu := \varphi_{\mathrm{id}_*,\mathrm{id}_*}: t \circ t \Longrightarrow t$, $\eta\colon \mathrm{id}_a \Longrightarrow t$ の 4 つを与えると確定する .



lax 2-functor の定義から,次の等号が成り立つ.



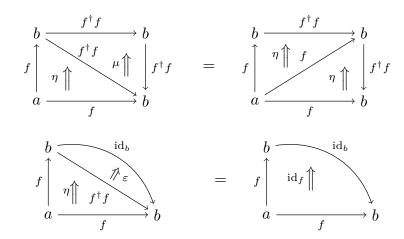
逆に , a,t,μ,η が上記の条件を満たすとすれば , lax 2-functor $F\colon \mathbf{1} \longrightarrow \mathcal{C}$ を定義することができる .

こうして lax 2-functor $F: \mathbf{1} \longrightarrow \mathcal{C}$ と四つ組 $\langle a,t,\mu,\eta \rangle$ を同一視することができる.そこで,この条件を満たす $\langle a,t,\mu,\eta \rangle$ のこともモナドと呼ぶ.単に t のことをモナドということもある.

図式から容易に分かるように, \mathcal{C}^{op} でのモナドは \mathcal{C} でのモナドでもある.

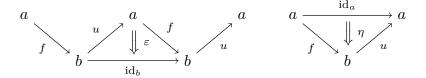
例.
$$a \in \mathcal{C}$$
 とするとき , $\langle a, \mathrm{id}_a, \mathrm{id}_{\mathrm{id}_a}, \mathrm{id}_{\mathrm{id}_a} \rangle$ はモナドである .

例. $f\colon a\longrightarrow b$ として,左 Kan 拡張 $\langle f^\dagger f,\eta\rangle$ が存在するとする.このとき $f^\dagger f$ はコモナドになる.その為には,左 Kan 拡張の普遍性により次の μ と ε を取る.

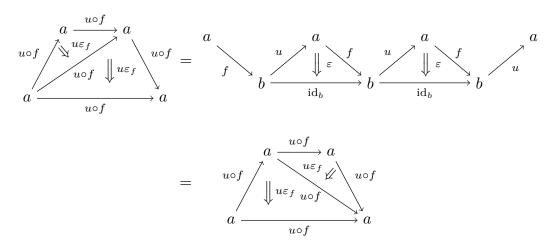


このとき $\langle b, f^\dagger f, \mu, \varepsilon \rangle$ がコモナドとなることが分かる.この形のコモナドを density コモナドという.同様にして右 Kan 拡張 $f^\dagger f$ はモナドとなり,これを codensity モナドという.

命題 1. $f\dashv u\colon a\longrightarrow b$ を随伴とし,unit を η ,counit を ε とすれば, $\langle a,u\circ f,u\varepsilon_f,\eta\rangle$ はモナドである.



証明、まず結合律については



となり成り立つ.単位元についても

$$= \underbrace{a \xrightarrow{u \circ f} a}_{u \circ f} \underbrace{id_a}_{id}$$

となり成り立つ.

定義. $F,F'\colon \mathbf{1}\longrightarrow \mathcal{C}$ をモナドとする . F から F' へのモナド関手とは , pseudonatural transformation $F\Longrightarrow F'$ のことである .

モナド F を組 $\langle a,t,\mu,\eta\rangle$, モナド F' を組 $\langle a',t',\mu',\eta'\rangle$ と同一視したとき , $\langle a,t,\mu,\eta\rangle$ から $\langle a',t',\mu',\eta'\rangle$ へのモナド関手とは , 組 $\langle f,\varphi\rangle$ であって以下を満たすものであると言い換えることができる .

(1) $f: a \longrightarrow a'$ は 1-morphism で $\varphi: t' \circ f \Longrightarrow f \circ t$ は 2-morphism である.

$$\begin{array}{ccc}
a & \xrightarrow{f} a' \\
t \downarrow & \swarrow_{\varphi} & \downarrow_{t'} \\
a & \xrightarrow{f} a'
\end{array}$$

(2) $\varphi \circ \eta_f' = f\eta$ である .

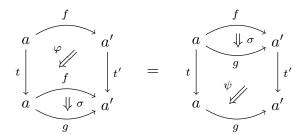
$$\begin{array}{cccc}
a & \xrightarrow{f} a' & a & \xrightarrow{f} a' \\
t & \swarrow_{\varphi} & t' & \downarrow_{\varphi'} & \operatorname{id}_{a'} & = t & \downarrow_{\varphi} & \operatorname{id}_{a} & = \\
a & \xrightarrow{f} a' & a & \xrightarrow{f} a'
\end{array}$$

(3) $\mu\circ\varphi_t\circ t'\varphi=\varphi\circ\mu_f'$ である .

 $\langle a,t,\mu,\eta\rangle$ から $\langle a',t',\mu',\eta'\rangle$ へのモナド関手を $\langle f,\varphi\rangle\colon\langle a,t,\mu,\eta\rangle\longrightarrow\langle a',t',\mu',\eta'\rangle$, もしくは単に $f\colon t\longrightarrow t'$ で表す .

定義. $F, F': \mathbf{1} \longrightarrow \mathcal{C}$ をモナド , $\sigma, \tau: F \Longrightarrow F'$ をモナド関手とする . σ から τ へのモナド関手変換とは modification $\sigma \Longrightarrow \tau$ のことである .

 σ, τ を $\langle f, \varphi \rangle$, $\langle g, \psi \rangle$ と同一視すれば, $\langle f, \varphi \rangle$ から $\langle g, \psi \rangle$ へのモナド関手変換とは,2-mophism $\sigma \colon f \Longrightarrow g$ であって次の等式を満たすものである.



 $\operatorname{Monad}(\mathcal{C}) := \operatorname{Fun}_{\operatorname{lax}}(\mathbf{1},\mathcal{C})$ とすれば , $\operatorname{Monad}(\mathcal{C})$ は対象をモナド , 1-morphism をモナド関手 , 2-morphism をモナド関手変換とする strict 2-category である .

 $a,b\in\mathcal{C}$ を対象, $f,g\colon a\longrightarrow b$ を 1-morphism, $\varphi\colon f\Longrightarrow g$ を 2-morphism とする. $\mathrm{Inc}_\mathcal{C}(a):=\langle a,\mathrm{id}_a,\mathrm{id}_{\mathrm{id}_a}\rangle$ はモナドであり $\mathrm{Inc}_\mathcal{C}(f):=\langle f,\mathrm{id}_f\rangle\colon\mathrm{Inc}_\mathcal{C}(a)\longrightarrow\mathrm{Inc}_\mathcal{C}(b)$ はモナド関手, $\mathrm{Inc}_\mathcal{C}(\varphi):=\varphi\colon f\Longrightarrow g$ はモナド関手変換である.こうして strict 2-functor $\mathrm{Inc}_\mathcal{C}\colon\mathcal{C}\longrightarrow\mathrm{Monad}(\mathcal{C})$ が得られる.

逆にモナド $\langle a,t,\mu,\eta\rangle$,モナド関手 $\langle f,\varphi\rangle$,モナド関手変換 σ に対して $U_{\mathcal{C}}(\langle a,t,\mu,\eta\rangle):=a$, $U_{\mathcal{C}}(\langle f,\varphi\rangle):=f$, $U_{\mathcal{C}}(\sigma):=\sigma$ と定めれば $U_{\mathcal{C}}:\operatorname{Monad}(\mathcal{C})\longrightarrow\mathcal{C}$ は strict 2-functor である.

命題 2. Cat-随伴 $U_{\mathcal{C}} \dashv \operatorname{Inc}_{\mathcal{C}} \colon \operatorname{Monad}(\mathcal{C}) \longrightarrow \mathcal{C}$ が成り立つ.

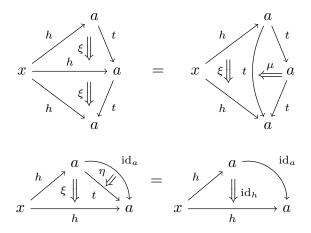
証明.略

一般に, ${\rm Inc}_{\mathcal C}$ は右随伴を持つとは限らない. ${\rm Inc}_{\mathcal C}$ の右随伴が存在するとき,それを ${\rm Alg}_{\mathcal C}$ で表す.

定義、 $\langle a,t,\mu,\eta\rangle$ をモナドとする.モナド関手 $\langle h,\xi\rangle\colon \mathrm{Inc}_{\mathcal{C}}(x)\longrightarrow t$ を左 t-加群という.即ち $\langle h,\xi\rangle$ は以下の条件を満たす.

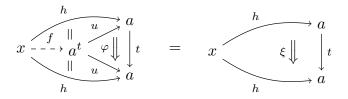
• $h: x \longrightarrow a$ は 1-morphism で $\xi: t \circ h \Longrightarrow h$ は 2-morphism である.

• 次の等式が成り立つ.

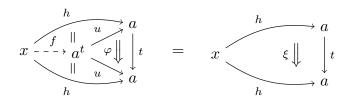


定義.モナド $\langle a,t,\mu,\eta\rangle$ の普遍左 t-加群とは左 t-加群 $\langle u\colon a^t\to a,\ \varphi\colon t\circ u\Rightarrow u\rangle$ であって,以下の条件を満たすものをいう.

• $\langle h\colon x\to a,\ \xi\colon t\circ h\Rightarrow h\rangle$ が左 t-加群ならば , 1-morphism $f\colon x\longrightarrow a^t$ が一意に存在して次の等式が成り立つ .



• $\langle h, \xi \rangle$, $\langle h', \xi' \rangle$ を左 t-加群とする.上記の条件により $f, f' \colon x \longrightarrow a^t$ が取れる.



2-morphism $\sigma: h \Longrightarrow h'$ が次の等式を満たすとき

2-morphism $\tau\colon f\Longrightarrow f'$ が一意に存在して $u\circ \tau=\sigma$ となる .

$$x \underbrace{\downarrow \tau}_{f'} a^t \xrightarrow{u} b = x \underbrace{\downarrow \sigma}_{h'} b$$

また a^t をモナド t の Eilenberg-Moore 対象という.

定理 3. $\mathrm{Alg}_{\mathcal{C}}$ が存在するならば , 任意のモナド $\langle a,t,\mu,\eta\rangle$ に対して $\mathrm{Alg}_{\mathcal{C}}(t)$ はモナド t の Eilenberg-Moore 対象である .

証明. 随伴 $\operatorname{Inc}_{\mathcal{C}}\dashv\operatorname{Alg}_{\mathcal{C}}$ の counit が定めるモナド関手を $\langle u^t,\delta^t \rangle\colon \operatorname{Inc}_{\mathcal{C}}(\operatorname{Alg}_{\mathcal{C}}(t))\longrightarrow t$ とする.即ち $\langle u^t,\delta^t \rangle$ は左 t-加群である.

$$\begin{array}{c} \operatorname{Alg}_{\mathcal{C}}(t) \xrightarrow{u^{t}} a \\
\operatorname{id} \downarrow \mathscr{U}_{\delta^{t}} \downarrow t \\
\operatorname{Alg}_{\mathcal{C}}(t) \xrightarrow{u^{t}} a
\end{array}$$

 $\langle u^t, \delta^t
angle$ が普遍左 t-加群であることを示すため, $\langle h, \xi
angle$ を左 t-加群とする.

$$x \underbrace{\downarrow^{t}}_{h} \underbrace{\downarrow^{t}}_{a}$$

即ち $\langle h, \xi \rangle$ はモナド関手 $\operatorname{Inc}_{\mathcal{C}}(x) \longrightarrow t$ である.

$$\begin{array}{c}
x \xrightarrow{h} a \\
\downarrow d \downarrow & \downarrow t \\
x \xrightarrow{h} a
\end{array}$$

随伴 $\operatorname{Inc}_{\mathcal{C}} \dashv \operatorname{Alg}_{\mathcal{C}}$ で $\langle h, \xi \rangle$: $\operatorname{Inc}_{\mathcal{C}}(x) \longrightarrow t$ に対応する $f \colon x \longrightarrow \operatorname{Alg}_{\mathcal{C}}(t)$ を取る. $\langle u^t, \delta^t \rangle$ の取り方から,次の等式が成り立つ.

これは書きかえれば次の図式となる.随伴 ${
m Inc}_{\mathcal C}\dashv {
m Alg}_{\mathcal C}$ の性質から f が一意であることも分かる.

次に $\langle h, \xi \rangle$, $\langle h', \xi' \rangle$ を左 t-加群として 2-morphism $\sigma \colon h \Longrightarrow h'$ が次の等式を満たすとする .

このとき σ はモナド関手変換 $\langle h, \xi \rangle \Longrightarrow \langle h', \xi' \rangle$ を与える.よって随伴 $\mathrm{Inc}_{\mathcal{C}} \dashv \mathrm{Alg}_{\mathcal{C}}$ による圏同型

$$\operatorname{Monad}(\mathcal{C})(\operatorname{Inc}_{\mathcal{C}}(x), t) \cong \mathcal{C}(x, \operatorname{Alg}_{\mathcal{C}}(t))$$

で $\sigma \colon \langle h, \xi \rangle \Longrightarrow \langle h', \xi' \rangle \colon \operatorname{Inc}_{\mathcal{C}}(x) \longrightarrow t$ に対応する $\tau \colon f \Longrightarrow f' \colon x \longrightarrow a^t$ が取れる.このとき counit の性質から $u^t \circ \tau = \sigma$ であり,このような τ は一意である.

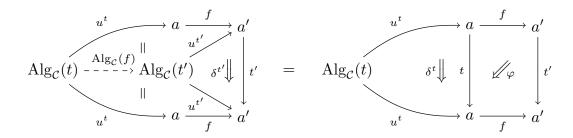
以上により
$$\langle u^t, \delta^t \rangle$$
 は普遍左 t -加群である.

逆に

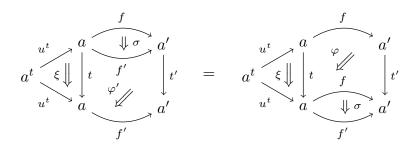
定理 4. 任意のモナド t に対して Eilenberg-Moore 対象が存在するならば $\mathrm{Alg}_\mathcal{C}$ が存在する .

証明. まず以下のように定義する.

- モナド $\langle a,t,\mu,\eta\rangle$ に対して $\mathrm{Alg}_{\mathcal{C}}(t):=a^t$ と定める.
- $\langle a,t,\mu,\eta\rangle$, $\langle a',t',\mu',\eta'\rangle$ をモナド , $\langle f,\varphi\rangle\colon t\longrightarrow t'$ をモナド関手とする. $a^{t'}$ の普 遍性により $\mathrm{Alg}_{\mathcal{C}}(\langle f,\varphi\rangle)\colon a^t\longrightarrow a^{t'}$ を定める.



• $\langle a, t, \mu, \eta \rangle$, $\langle a', t', \mu', \eta' \rangle$ をモナド , $\langle f, \varphi \rangle : t \longrightarrow t'$ をモナド関手 , $\sigma : \langle f, \varphi \rangle \Longrightarrow \langle f', \varphi' \rangle$ をモナド関手変換とする.このとき σ は次の等式を満たす.



よって $\mathrm{Alg}_{\mathcal{C}}(\sigma)\colon \mathrm{Alg}_{\mathcal{C}}(\langle f,\varphi\rangle) \implies \mathrm{Alg}_{\mathcal{C}}(\langle f',\varphi'\rangle)$ が一意に存在して $u^{t'}$ の $\mathrm{Alg}_{\mathcal{C}}(\sigma)=\sigma\circ u^t$ となる .

これは ${
m strict}$ 2-functor ${
m Alg}_{\mathcal C}\colon {
m Monad}({\mathcal C})\longrightarrow {\mathcal C}$ を与えることが分かる . ${
m Inc}_{\mathcal C}\dashv {
m Alg}_{\mathcal C}$ を示せばよい . その為には x,t について自然な圏同型

$$\Phi_{xt}$$
: Monad(\mathcal{C})(Inc _{\mathcal{C}} (x), t) $\cong \mathcal{C}(x, a^t)$

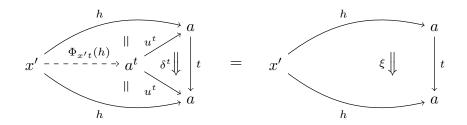
を構成すればよい. Φ_{xt} を a^t の普遍性により自然に定めれば, Φ_{xt} は圏同型を与える.よってこの Φ_{xt} が自然であればよい.以下,簡単のため $\mathrm{M}(x,t):=\mathrm{Monad}(\mathcal{C})(\mathrm{Inc}_{\mathcal{C}}(x),t)$ と書く.

まず x について自然であることを示す.その為には 2-morphism $\alpha\colon f\Longrightarrow g\colon x\longrightarrow x'$ に対して等式

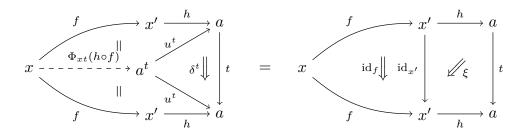
$$\mathbf{M}(x',t) \xrightarrow{\Phi_{x't}} \mathcal{C}(x',a^t) \xrightarrow{\begin{array}{c} -\circ f \\ \\ -\circ g \end{array}} \mathcal{C}(x,a^t) = \mathbf{M}(x',t) \xrightarrow{\begin{array}{c} -\circ \langle f, \mathrm{id}_f \rangle \\ \\ \\ -\circ \langle g, \mathrm{id}_g \rangle \end{array}} \mathbf{M}(x,t) \xrightarrow{\Phi_{xt}} \mathcal{C}(x,a^t)$$

を示せばよい.まず $\Phi_{x't}(-)\circ f=\Phi_{xt}(-\circ\langle f,\mathrm{id}_f\rangle)$ を示す.

 $(x,\xi)\colon \mathrm{Inc}_\mathcal{C}(x')\longrightarrow t$ をモナド関手,すなわち左 t-加群とする.普遍性から $x'\longrightarrow a^t$ が取れて,これが $\Phi_{x't}(h)$ である.



一方,左 t-加群 $h\circ f$ に対応するのが $\Phi_{xt}(h\circ f)$ である.



よって普遍性から $\Phi_{x't}(h)\circ f=\Phi_{xt}(h\circ f)$ となることが分かる.次に $\sigma\colon\langle h,\xi\rangle\Longrightarrow\langle h',\xi'\rangle\colon \mathrm{Inc}_{\mathcal{C}}(x')\longrightarrow t$ をモナド関手変換とする. $\Phi_{x't}(\sigma)$ は次の等式を満たす.

$$x' \underbrace{ \begin{array}{c} \Phi_{x't}(h) \\ \\ \Psi_{x't}(\sigma) \end{array}}_{\Phi_{x't}(h')} a^t \xrightarrow{u^t} a \qquad = \qquad x' \underbrace{ \begin{array}{c} h \\ \\ \\ \end{pmatrix} \sigma \xrightarrow{h'} a$$

一方 $\Phi_{xt}(\sigma \circ f)$ は次の等式を満たす.

$$x' \underbrace{\downarrow \Phi_{xt}(h \circ f)}_{\Phi_{xt}(h' \circ f)} a^t \xrightarrow{u^t} a = x \xrightarrow{f} x' \underbrace{\downarrow \sigma}_{h'} a$$

よって普遍性から $\Phi_{x't}(\sigma) \circ f = \Phi_{xt}(\sigma \circ f)$ である.

以上により $\Phi_{x't}(-)\circ f=\Phi_{xt}(-\circ\langle f,\mathrm{id}_f
angle)$ である.

次に自然変換の等式 $\Phi_{x't}(-)\circ\alpha=\Phi_{xt}(-\circ\alpha)$ を示す.その為には左 t-加群 $\langle h,\xi\rangle$ に対して $\Phi_{x't}(h)\circ\alpha=\Phi_{xt}(h\circ\alpha)$ を示せばよいが,これも普遍性から簡単にわかる.

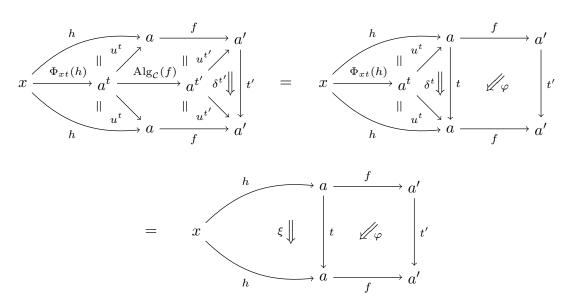
次に t について自然であることを示す.その為にはモナド関手変換 σ : $\langle f, \varphi \rangle \Longrightarrow \langle g, \psi \rangle$: $t \longrightarrow t'$ に対して等式

$$\mathbf{M}(x,t) \xrightarrow{\Phi_{xt}} \mathcal{C}(x,a^t) \underbrace{ \underbrace{ \underbrace{\mathbf{Alg}(f) \circ -}_{\mathrm{Alg}(g) \circ -}}_{\mathrm{Alg}(g) \circ -} \mathcal{C}(x,a^{t'}) = \mathbf{M}(x,t) \underbrace{ \underbrace{\mathbf{M}(x,t)}_{\langle g,\psi \rangle \circ -}}_{\langle g,\psi \rangle \circ -} \mathbf{M}(x,t') \xrightarrow{\Phi_{xt'}} \mathcal{C}(x,a^{t'})$$

を示せばよい.まず $\mathrm{Alg}_{\mathcal{C}}(f)\circ\Phi_{xt}(-)=\Phi_{xt'}(\langle f,arphi
angle\circ-)$ を示す.

 $(h,\xi)\colon \mathrm{Inc}_{\mathcal{C}}(x)\longrightarrow t$ をモナド関手,すなわち左 t-加群とする. $\Phi_{xt}(h),\mathrm{Alg}_{\mathcal{C}}(f)$ は次の等式で与えられる.

よって $Alg_{\mathcal{C}}(f) \circ \Phi_{xt}(h)$ は



より $\mathrm{Alg}_{\mathcal{C}}(f)\circ\Phi_{xt}(h)=\mathrm{Alg}_{\mathcal{C}}(f\circ h)$ となることが分かる.次に $\sigma\colon\langle h,\xi\rangle\Longrightarrow\langle h',\xi'\rangle\colon\mathrm{Inc}_{\mathcal{C}}(x)\longrightarrow t$ をモナド関手変換とする. $\Phi_{xt}(\sigma)$, $\Phi_{xt'}(f\circ\sigma)$ は次の等式で与えられる.

$$x \xrightarrow{\Phi_{xt}(h)} a^t \xrightarrow{u^t} a = x \xrightarrow{h} a$$

$$x \xrightarrow{\Phi_{xt}(h')} a^{t} \xrightarrow{u^t} a = x \xrightarrow{h'} a$$

$$x \xrightarrow{\Phi_{xt'}(f \circ h)} a^{t'} \xrightarrow{u^t} a' = x \xrightarrow{h'} a \xrightarrow{h'} a$$

よって $\mathrm{Alg}_{\mathcal{C}}(f)\circ\Phi_{xt}(\sigma)=\Phi_{xt'}(f\circ\sigma)$ である. 以上により $\mathrm{Alg}_{\mathcal{C}}(f)\circ\Phi_{xt}(-)=\Phi_{xt'}(\langle f,\varphi\rangle\circ-)$ である.

後は自然変換について示せばよい.つまり左 t-加群 $\langle h, \xi \rangle$ に対して $\mathrm{Alg}_{\mathcal{C}}(\sigma) \circ \Phi_{xt}(h) = \Phi_{xt'}(\sigma \circ h)$ を示せばよいがこれも普遍性から分かる.

よって , 以下 $a^t = \mathrm{Alg}_{\mathcal{C}}(t)$ と書くことにする .

定理 ${f 5.}$ ${
m Alg}_{\cal C}$ が存在するならば,任意のモナド $\langle a,t,\mu,\eta \rangle$ は随伴から命題 1 の方法で得られる.

証明. $\langle t, \mu \rangle$ は左 t-加群を定める.

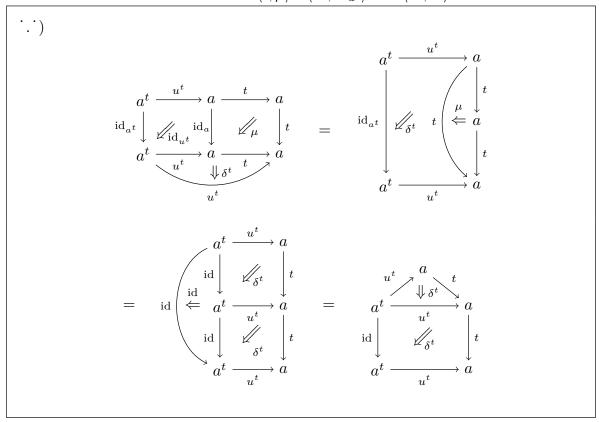
$$a \underbrace{\downarrow}_{t} a \downarrow_{t} t$$

よって $f^t \colon a \longrightarrow a^t$ が一意に存在して次の等式が成り立つ.

$$a \xrightarrow{f^t \parallel u^t} a \\ \downarrow t \\ \downarrow t \\ a \\ = a \xrightarrow{t} a \\ \downarrow t \\ \downarrow t$$

特に $t=u^t\circ f^t$ である.故に, $f^t\dashv u^t$ を示して,この随伴から命題 1 の方法で得たモナドが $\langle a,t,\mu,\eta\rangle$ と一致することを示せばよい.

 $\delta^t \colon t \circ u^t \Longrightarrow u^t$ はモナド関手変換 $\langle t, \mu
angle \circ \langle u^t, \mathrm{id}_{u^t}
angle \Longrightarrow \langle u^t, \delta^t
angle$ を定める.



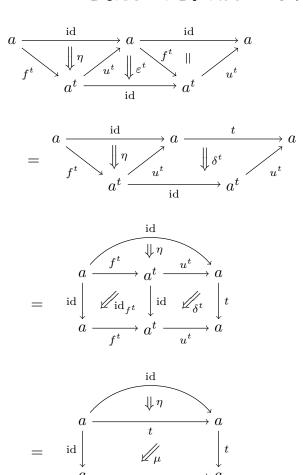
よって,随伴による圏同型

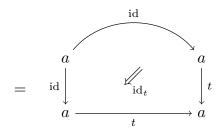
$$\operatorname{Monad}(\mathcal{C})(\operatorname{Inc}_{\mathcal{C}}(a^t), t) \cong \mathcal{C}(a^t, a^t)$$

で $\delta^t \colon t \circ u^t \Longrightarrow u^t \colon \mathrm{Inc}_{\mathcal{C}}(a^t) \longrightarrow t$ に対応する $\varepsilon^t \colon k \Longrightarrow \mathrm{id} \colon a^t \longrightarrow a^t$ が取れる.counit の性質から $\langle u^t, \delta^t \rangle \circ \langle k, \mathrm{id} \rangle = \langle t, \mu \rangle \circ \langle u^t, \mathrm{id}_{u^t} \rangle$, $u^t \circ \varepsilon = \delta^t$ である.

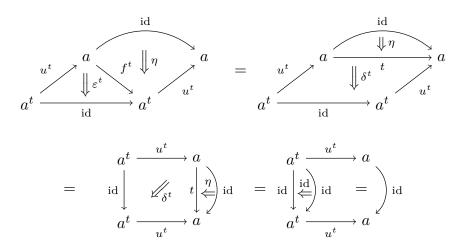
 $t=u^t\circ f^t$ だから $u^t\circ k=u^t\circ f^t\circ u^t$ であり,よって u^t の普遍性から $k=f^t\circ u^t$ が分かる.また $u^t\varepsilon_{f^t}=\delta^t_{f^t}=\mu$ である.

後は η, ε^t が随伴 $f^t \dashv u^t \colon a \longrightarrow a^t$ を与えることを示せばよい.まず



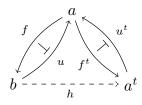


より $u^t(arepsilon_{f^t}^t\circ f^t\eta)=\mathrm{id}_t$ であるから , $arepsilon_{f^t}\circ f^t\eta=\mathrm{id}_{f^t}$ が分かる . また



より $u^t \varepsilon^t \circ \eta_{u^t} = \mathrm{id}_{u^t}$ である.

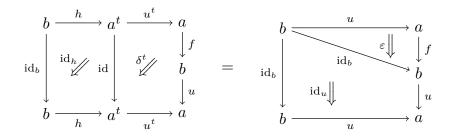
定理 6. $\mathrm{Alg}_{\mathcal{C}}$ が存在するとする.随伴 $f\dashv u\colon a\longrightarrow b$ の unit を η , counit を ε とする. $f\dashv u$ から得られるモナドを $\langle a,t,\mu,\eta\rangle$ とする.定理 5 により,モナド t から随伴 $f^t\dashv u^t\colon a\longrightarrow a^t$ (unit は η , counit は ε^t) が得られる.このとき 1-morphism $h\colon b\longrightarrow a^t$ が一意に存在して $u^t\circ h=u$, $u^t\varepsilon_h=(u^t\circ h)\varepsilon$ となる.更に $f\circ h=f^t$ か つ $h\varepsilon=\varepsilon_h^t$ である.



証明. $\langle u,u\circ\varepsilon \rangle\colon \mathrm{Inc}_{\mathcal{C}}(b)\longrightarrow t$ はモナド関手 , よって左 t-加群である .

$$\begin{array}{c|c}
b & \xrightarrow{u} & a \\
\downarrow id_b & \downarrow f \\
\downarrow id_u & \downarrow u \\
b & \xrightarrow{u} & a
\end{array}$$

故に $h:b\longrightarrow a^t$ が存在して次の等式が成り立つ.



従って $u^t\circ h=u$, $\delta^t_h=u\varepsilon$ である . $\delta^t=u^t\varepsilon$ だったから $u^t\varepsilon_h=(u^t\circ h)\varepsilon$ となる .

このような h の一意性は u^t の普遍性から分かる .

t の定義から $\mu = u \varepsilon_f$ だったから

$$= \operatorname{id}_{a} \xrightarrow{f} b \xrightarrow{u} a \xrightarrow{\downarrow f} b \xrightarrow{u} a \xrightarrow{\downarrow f} b \xrightarrow{u} a \xrightarrow{f} b \xrightarrow{u} a \xrightarrow{\downarrow f} b \xrightarrow{\downarrow u} a$$

となるので, $\langle u^t,\delta^t \rangle$ の普遍性により $h\circ f=f^t$ である.また $h\varepsilon=\varepsilon_h^t$ も u^t の普遍性から分かる.

この定理で得られる h を随伴 $f \dashv u$ の right comparison といい , right comparison が 同型なとき $f \dashv u$ は monadic であるという .

定義. t をモナドとする . \mathcal{C}^{op} での左 t-加群を右 t-加群という .

$$x
\downarrow f \qquad \uparrow t$$
 a

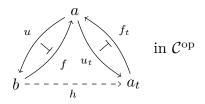
 $\mathcal{C}^{\mathrm{op}}$ での普遍左 t-加群 $\langle f_t \colon a \to a_t, \ \varphi \colon f_t \circ t \Rightarrow f_t \rangle$ を普遍右 t-加群という.また a_t を t の Kleisli 対象という.

定理 7. $\mathrm{Alg}_{\mathcal{C}^{\mathrm{op}}}$ が存在する \Longleftrightarrow \mathcal{C} の任意のモナド t の $\mathrm{Kleisli}$ 対象が存在する .

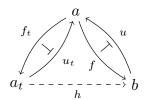
定理 8. $\mathrm{Alg}_{\mathcal{C}^{\mathrm{op}}}$ が存在するならば , \mathcal{C} の任意のモナド $\langle a,t,\mu,\eta \rangle$ は \mathcal{C} の随伴から得られる .

証明. $\mathrm{Alg}_{\mathcal{C}^{\mathrm{op}}}$ が存在するとする . t を \mathcal{C} のモナドとすると , これは $\mathcal{C}^{\mathrm{op}}$ のモナドでもあるから , t は $\mathcal{C}^{\mathrm{op}}$ の随伴 u \dashv f から得られる . このとき \mathcal{C} の随伴 f \dashv u が成り立ち , これから t が得られる .

 $\mathrm{Alg}_{\mathcal{C}^\mathrm{op}}$ が存在するとして $f\dashv u\colon a\longrightarrow b$ を随伴とする . \mathcal{C}^op の随伴 $u\dashv f\colon a\longrightarrow b$ から得られる \mathcal{C}^op のモナドを t とすると , t から \mathcal{C}^op の随伴 $u_t\dashv f_t\colon a\longrightarrow a_t$ が得られる . このとき \mathcal{C}^op の 1-morphism $h\colon b\longrightarrow a_t$ が存在して $f_t\circ h=f$, $h\circ u=u_t$ となる .



即ち $\mathcal C$ において随伴 $f_t\dashv u_t\colon a\longrightarrow a_t$ が存在して, $h\circ f_t=f$, $u\circ h=u_t$ である.



定理 9. $\mathrm{Alg}_{\mathbf{Cat}}$ が存在する. 故に \mathbf{Cat} の任意のモナドは随伴関手から得られる.

証明. A を圏として,モナド $\langle A,T,\mu,\eta \rangle$ に対して Eilenberg-Moore 対象 A^T を構成すればよい.

※ A^T が存在したとすると $A^T\cong \mathbf{Cat}(\mathbf{1},A^T)\cong \mathrm{Monad}(\mathbf{Cat})(\mathrm{Inc}(\mathbf{1}),T)$ となる . よって圏 A^T の対象は左 T-加群 $\langle H\colon \mathbf{1}\to A,\xi\colon TH\Rightarrow H\rangle$ である .

$$\mathbf{1} \underbrace{\downarrow}_{H} A \xrightarrow{A}$$

A の対象 a:=H(*) と A の射 $k:=\xi_*\colon TH(*)\longrightarrow H(*)$ は次の可換図式を満たす.

$$TTa \xrightarrow{Tk} Ta \qquad a \xrightarrow{\eta_a} Ta$$

$$\downarrow^{\mu_a} \downarrow \qquad \downarrow^{k} \qquad \downarrow^{k}$$

$$Ta \xrightarrow{k} a \qquad a$$

逆に $\langle a,k \rangle$ が上記の条件を満たせば,左T-加群を与えることが分かる.

圏 A^T を次のように定義する.(この A^T を Eilenberg-Moore 圏という.)

• $a \in A$ と射 $k \colon Ta \longrightarrow a$ の組 $\langle a, k \rangle$ で,次の図式を可換にするものを対象とする.

$$TTa \xrightarrow{Tk} Ta \qquad a \xrightarrow{\eta_a} Ta$$

$$\downarrow^{\mu_a} \downarrow \qquad \downarrow^{k}$$

$$Ta \xrightarrow{k} a \qquad a$$

• $\langle a,k \rangle$ から $\langle a',k' \rangle$ と射とは,射 $f\colon a \longrightarrow a'$ で次の図式を可換にするものとする.

$$Ta \xrightarrow{k} a$$

$$Tf \downarrow \qquad \downarrow f$$

$$Ta' \xrightarrow{k'} a'$$

関手 $U^T\colon A^T\longrightarrow A$ を $U^T(\langle a,k\rangle):=a$, $U^T(f):=f$ で定める.自然変換 $\delta^T\colon T\circ U^T\Longrightarrow U^T$ を $\delta^T_{\langle a,k\rangle}:=k\colon Ta\longrightarrow a$ で定める. $\langle U^T,\delta^T\rangle$ は左 T-加群である.

$$A^T \underbrace{V^T}_{V^T} A$$

$$A$$

$$A$$

$$A$$

$$A$$

 $\langle U^T, \delta^T
angle$ が普遍左 T-加群であることを示す. $\langle H, \xi
angle$ が左 T-加群であるとする.

$$X \stackrel{H}{\rightleftharpoons} A$$
 $X \stackrel{\xi}{\rightleftharpoons} \downarrow T$

関手 $F: X \longrightarrow A^T$ を

• 対象 $x\in X$ に対して $Fx:=\langle Hx,\xi_x\rangle$ とする . $(\langle H,\xi\rangle$ が左 T-加群だから,次の図式が可換となる.)

$$TTa \xrightarrow{Tk} Ta \qquad a \xrightarrow{\eta_a} Ta$$

$$\downarrow^{\mu_a} \downarrow \qquad \downarrow^{k} \qquad \downarrow^{k}$$

$$Ta \xrightarrow{k} a \qquad a$$

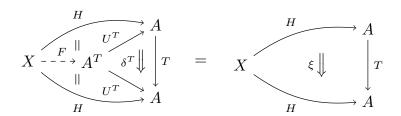
• X の射 $f\colon x\longrightarrow y$ に対して Ff:=Hf とする. $(\xi$ が自然変換だから次の図式が可換であり,よって $f\colon \langle Hx,\xi_x\rangle \longrightarrow \langle Hy,\xi_y\rangle$ は A^T の射である.)

$$THx \xrightarrow{\xi_x} Hx$$

$$THf \downarrow \qquad \downarrow Hf$$

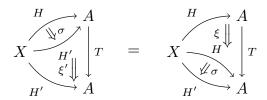
$$THy \xrightarrow{\xi_y} Hy$$

で定める.このとき $U^T\circ F=H$, $\delta^T\circ F=\xi$ である.



明らかにこのような F は一意である.

 $\langle H, \xi \rangle$, $\langle H', \xi' \rangle$ を左 T-加群として , 自然変換 σ が次の等式を満たすとする .



 $\langle H, \xi \rangle$, $\langle H', \xi' \rangle$ に対して上記方法で $F, F' \colon X \longrightarrow A^T$ を定義する.このとき $\tau \colon F \longrightarrow F'$ を $\tau_x := \sigma_x \colon \langle Hx, \xi_x \rangle \longrightarrow \langle H'x, \xi_x' \rangle$ で定める.すると明らかに $U^T \circ \tau = \sigma$ であり,このような τ は一意である.

以上により $\langle U^T, \delta^T \rangle$ が普遍左 T-加群であって, A^T が Eilenberg-Moore 対象であることが分かった.

定理 10. $Alg_{Cat^{op}}$ が存在する.

証明. A を圏として,モナド $\langle A,T,\mu,\eta \rangle$ に対して Kleisli 対象 A_T を構成すればよい.圏 A_T を以下のように定義する.(この A_T を Kleisli 圏という.)

- $\mathrm{Ob}(A_T) := \mathrm{Ob}(A)$ とする .
- $a,b\in \mathrm{Ob}(A_T)$ に対して,a から b への射とは,A の射 $a\longrightarrow Tb$ のこととする.A の射 $f\colon a\longrightarrow Tb$ に対応する A_T の射を $f^{\flat}\colon a\longrightarrow b$ で表す.
- 合成は $(a \xrightarrow{f^{\flat}} b \xrightarrow{g^{\flat}} c) := (a \xrightarrow{f} Tb \xrightarrow{Tg} TTc \xrightarrow{\mu_c} Tc)^{\flat}$ で定義する.

関手 $F_T: A \longrightarrow A_T$ を

- 対象 $a \in A$ に対して $F_T(a) := a$ とする.
- $f: a \longrightarrow b$ に対して $F_T(f) := (a \xrightarrow{f} b \xrightarrow{\eta_b} Tb)^{\flat}$ とする.

で定めて,自然変換 $\varphi\colon F_T\circ T\Longrightarrow F_T$ を $\varphi_a:=(\mathrm{id}_{Ta})^{\flat}\colon Ta\longrightarrow a$ により定めると

 $\langle F_T, \varphi \rangle$ は右 T-加群である.

 $\langle F_T, \varphi \rangle$ が普遍右 T-加群であることを示せばよい、その為に $\langle H, \xi \rangle$ を右 T-加群とする、

$$X
\downarrow \xi \downarrow \uparrow T \\
H \qquad A$$

関手 $F: A_T \longrightarrow X$ を

- 対象 $a \in A_T$ に対して F(a) := H(a) とする.
- $f^{\flat}: a \longrightarrow b$ に対して $F(f^{\flat}) := (Ha \xrightarrow{Hf} HTb \xrightarrow{\xi_b} Hb)$ とする.

で定めると次の等式が成り立つ.

明らかにこのような F は一意である.

 $\langle H, \xi \rangle$, $\langle H', \xi' \rangle$ を右 T-加群として , 自然変換 σ が次の等式を満たすとする .

$$X \stackrel{H'}{\leftarrow} A = X \stackrel{H}{\leftarrow} A \\ X \stackrel{E'}{\leftarrow} A = X \stackrel{H'}{\leftarrow} A$$

 $\langle H, \xi \rangle$, $\langle H', \xi' \rangle$ に対して上記方法で $F, F' \colon A_T \longrightarrow X$ を定義する.このとき $\tau \colon F \longrightarrow F'$ を $\tau_a := \sigma_a \colon Fa = Ha \longrightarrow Hb = Fb$ で定める.すると明らかに $\tau \circ F_T = \sigma$ であり,このような τ は一意である.

以上により $\langle F_T, \varphi \rangle$ が普遍右 T-加群であって, A_T が $ext{Kleisli}$ 対象であることが分かった.

定義. t をコモナドとする . \mathcal{C}^{co} での左 t-加群を左 t-余加群という .

$$x \underbrace{\uparrow}_{h} \begin{bmatrix} a \\ t \\ a \end{bmatrix} t$$

 \mathcal{C}^{co} での普遍左 t-加群を普遍左 t-余加群という.

補題 11. $\langle a,t,\mu,\eta\rangle$ をモナド, $f\colon a\longrightarrow b$ を 1-morphism として,左 Kan 拡張 $\langle (f\circ t)^\dagger f,\eta'\rangle$ が存在するとする.

$$\begin{array}{ccc}
a & \xrightarrow{f} & b \\
t & \uparrow & \uparrow \eta' & \downarrow (f \circ t)^{\dagger} f \\
a & \xrightarrow{f} & b
\end{array}$$

このとき $(f \circ t)^{\dagger} f$ はコモナドになる .

証明. Kan 拡張の普遍性により次の図式の μ', ε を取る.

$$a \xrightarrow{f} b$$

$$t \left((f \circ t)^{\dagger} f \middle) \Rightarrow b = t \left((f \circ t)^{\dagger} f \middle) \Rightarrow b$$

$$a \xrightarrow{f} b$$

$$t \left((f \circ t)^{\dagger} f \middle) \Rightarrow b$$

$$da \xrightarrow{f} b$$

このとき $\langle a, (f \circ t)^\dagger f, \mu', \varepsilon \rangle$ がコモナドとなることが分かる .

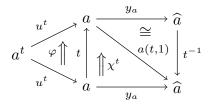
定理 12. $\mathcal C$ に米田構造が入っているとする.a を admissible で $t\colon a\longrightarrow a$ をモナドとする.このとき前補題により $t^{-1}=(y_a\circ t)^\dagger y_a$ はコモナドである.次の図式の $\langle v,\psi\rangle$ を普遍左 t^{-1} -余加群とする.

$$c \underbrace{\sqrt[v]{\hat{a}}}_{v} \downarrow_{t^{-1}}$$

このとき $e \in \mathcal{C}$ が t の Eilenberg-Moore 対象 \iff 次の形の pullback が存在する .

$$\begin{array}{ccc}
e & \longrightarrow c \\
\downarrow & & \downarrow v \\
a & \longrightarrow \widehat{a}
\end{array}$$

証明. (\Longrightarrow) $\langle u^t\colon a^t\to a,\ \varphi\rangle$ を普遍左 t-加群とする . $a(t,1)\cong t^{-1}\circ a(1,1)=t^{-1}\circ y_a$ だった . 次の 2-morphism の合成を θ とする .



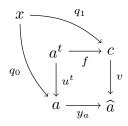
 $\langle y_a\circ u^t, \theta
angle$ は t^{-1} -余代数である.よって普遍 t^{-1} -余代数 $\langle v,\psi
angle$ の普遍性から次の $f\colon a^t\longrightarrow c$ が存在する.

$$a^{t} \xrightarrow{y_{a}} a \xrightarrow{y_{a}} \widehat{a}$$

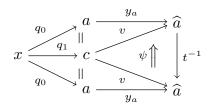
$$a^{t} \xrightarrow{f} c \xrightarrow{y_{a}} \widehat{a}$$

$$a^{t} \xrightarrow{y_{a}} \widehat{a}$$

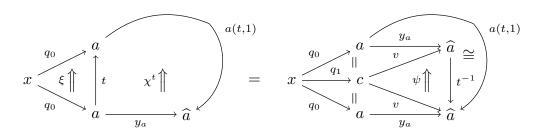
このとき左辺の左下の四角が pullback であることを示せばよい . そこで次の図式の x を取る .



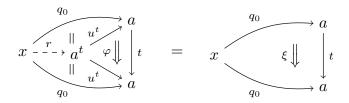
このとき次の図式を得るが、これは t^{-1} -余代数を与える。



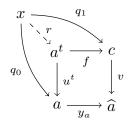
絶対左 Kan リフト $a(t,1)_\dagger y_a = \langle t,\chi^t \rangle$ の普遍性から次の ξ を得る .



すると $\langle q_0, \xi \rangle$ は左 t-加群である.よって a^t の普遍性から $r\colon x \longrightarrow a^t$ が一意に存在して次の等式が成り立つ.



故に $u^t \circ r = q_0$ であるから , $f \circ r = q_1$ を示せばよい .

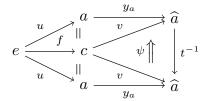


それは定義から $v\circ f\circ r=y_a\circ u^t\circ r=y_a\circ q_0=v\circ q_1$ となるので,v の普遍性から $f\circ r=q_1$ が分かる.

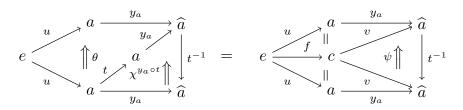
(⇐=) 次の図式を pullback とする.

$$\begin{array}{ccc}
e & \xrightarrow{f} c \\
u \downarrow & & \downarrow v \\
a & \xrightarrow{y_a} \widehat{a}
\end{array}$$

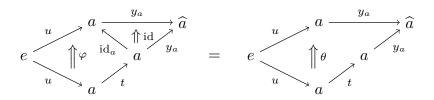
次の合成は t^{-1} -余代数である.



 $t_{\dagger}^{-1}y_a=\langle y_a\circ t,\chi^{y_a\circ t}
angle$ が絶対左 Kan リフトだから次の等式を満たす heta を得る .

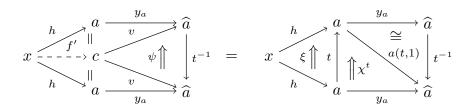


 $y_{a\dagger}y_a=\langle \mathrm{id}_a,\mathrm{id}_{y_a}
angle$ が絶対左 Kan リフトだから,次の等式が成り立つ arphi が取れる.

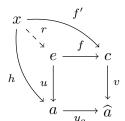


この $\langle u, \varphi \rangle$ は左 t-加群である.

 $\langle u,\varphi\rangle$ が普遍左 t-加群であることを示すため, $\langle h\colon x\to a,\xi\rangle$ を左 t-加群とする. \Longrightarrow の証明で $\langle u^t,\varphi\rangle$ から f を得たのと同じ方法で,次の f' を得る.

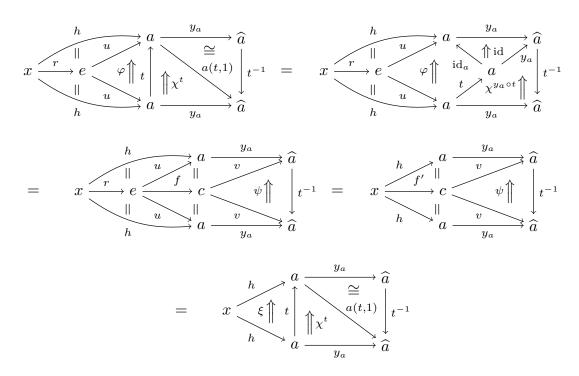


左辺の左下の四角が可換で , e が pullback だったから射 $r\colon x\longrightarrow e$ が一意に存在して次の図式が可換となる .



このとき,次の等式が成り立つことを示せばよい.

それは



となるから,絶対左 Kan リフト $a(t,1)_\dagger y_a = \langle t,\chi^t \rangle$ の普遍性から分かる. \qed

参考文献

- [1] Ross Street, The formal theory of monads, Journal of Pure and Applied Algebra 2, Issue 2 (1972), 149–168, http://dx.doi.org/10.1016/0022-4049(72)90019-9
- [2] Ross Street and R.F.C. Walters, Yoneda Structures on 2-categories, J. Algebra 50 (1978), 350–379