モデル圏

alg-d

http://alg-d.com/math/kan_extension/

2019年3月24日

目次

1	定義と導入....................................	1
2	基本的性質	4
3	ホモトピー圏の構成	17
4	導来 関手	22

1 定義と導入

通常の圏では同型な対象は同じものとみなすが、数学では同型でないものでも同じとみなすことがある。例えば位相空間の圏 **Top** においてはホモトピー同値や弱ホモトピー同値という概念がある。更にこの **Top** は cofibration,fibration と呼ばれる種類の射も持っている。このような,「weak equivalence」「cofibration」「fibration」と呼ばれる射を持つ圏のことをモデル圏という。

定義. 可換図式

$$\begin{array}{ccc}
a & \xrightarrow{f} & u \\
\downarrow i & & \downarrow p \\
b & \xrightarrow{g} & v
\end{array}$$

のリフトとは、射 $h: b \to u$ であって $f = h \circ i$ 、 $g = p \circ h$ を満たすものをいう.即ち次

の図式が可換となるようなhである.

$$\begin{array}{ccc}
a & \xrightarrow{f} & u \\
\downarrow & \downarrow & \downarrow & \downarrow \\
b & \xrightarrow{g} & v
\end{array}$$

定義. モデル圏とは、完備かつ余完備な圏 C であって、W, Cof , $\mathrm{Fib} \subset \mathrm{Mor}(C)$ が与えられ、以下の条件を満たすことをいう.

- (1) (2-out-of-3) C の射 f,g が $\operatorname{cod}(f) = \operatorname{dom}(g)$ を満たすとする. $f,g,f \circ g$ のうち少なくとも 2 つが W に属するならば、残りの 1 つも W に属する.
- (2) (Retracts) C の射 g が f の retract で, $f \in W$ ($f \in \text{Cof}$, $f \in \text{Fib}$) ならば $g \in W$ ($g \in \text{Cof}$, $g \in \text{Fib}$) である.
- (3) (Lifting) C の可換図式

は

- (a) $i \in \text{Cof}$, $p \in \text{Fib} \cap W$ ならばリフトを持つ.
- (b) $i \in \text{Cof} \cap W$, $p \in \text{Fib}$ ならばリフトを持つ.
- (4) (Factorization) 任意の射 $f: a \to b$ は
 - (a) $f = p \circ i$, $i \in \text{Cof}$, $p \in \text{Fib} \cap W$ と分解できる.
 - (b) $f = p \circ i$, $i \in \text{Cof} \cap W$, $p \in \text{Fib } \mathcal{E}$ 分解できる.

W, Cof, Fib に属する射をそれぞれ weak equivalence, cofibration, fibration と呼び、ここでは記号で $a\stackrel{\sim}{\to} b$, $a\hookrightarrow b$, $a\to b$ のように書く. また Cof \cap W, Fib \cap W に属する射をそれぞれ trivial cofibration, trivial fibration と呼び、記号では $a\stackrel{\sim}{\hookrightarrow} b$, $a\stackrel{\sim}{\to} b$ と書く.

定義. $f: a \to b$ が $g: u \to v$ に対して LLP (Left Lifting Property) を持つ (もしくは g が f に対して RLP (Right Lifting Property) を持つ)

⇔ 任意の可換図式

がリフトを持つ.

例 1. 位相空間の圏 **Top** を考える. 任意の CW 複体 A に対する包含写像 $A \times \{0\} \to A \times [0,1]$ に対して RLP を持つ射を Serre fibration という.

- $f \in \mathbf{Top} \, \mathcal{D}^{\sharp}$ weak equivalence $\iff f \, \mathcal{D}^{\sharp}$ weak homotopy equivalence
- $f \in \mathbf{Top} \, \mathcal{D}^{\tilde{\imath}}$ fibration $\iff f \, \mathcal{D}^{\tilde{\imath}}$ Serre fibration
- $f \in \textbf{Top}$ が cofibration $\iff f$ が trivial fibration に対して LLP を持つ

と定めると、Top はモデル圏となる.

例 2. R を単位的環とする. 左 R 加群の鎖複体の圏 $\mathbf{Ch}_{>0}(R)$ において

- f が weak equivalence $\iff f$ がホモロジー群の同型を誘導する
- $f: M \to N$ が cofibration \iff 任意の $n \ge 0$ に対して $f_n: M_n \to N_n$ が単射であり、coker f_n が射影的

• $f: M \to N$ が fibration \iff 任意の n > 0 に対して $f_n: M_n \to N_n$ が全射

と定めると、 $\mathbf{Ch}_{>0}(R)$ はモデル圏となる.

モデル圏では weak equivalence を同型射と扱いたいのであるが,実はモデル圏 C の「weak equivalence を同型射とした」圏 $\operatorname{Ho}(C)$ を構成することができる (これをホモトピー圏という). 先の $\operatorname{Ch}_{\geq 0}(R)$ の例では,このホモトピー圏が導来圏になっている.また C,D をモデル圏, $F\colon C\to D$ を関手とするとホモトピー圏に対して自然に関手 $P\colon C\to \operatorname{Ho}(C),\ P'\colon D\to \operatorname{Ho}(D)$ が得られるから,次の図式を得る.

$$\begin{array}{c}
\operatorname{Ho}(C) \\
P \uparrow \\
C \xrightarrow{F} D \xrightarrow{P'} \operatorname{Ho}(D)
\end{array}$$

よってもし Kan 拡張が存在すれば、自然に関手 $\operatorname{Ho}(C) \to \operatorname{Ho}(D)$ を得ることができる. この関手を F の導来関手という.

この PDF の目的はホモトピー圏 $\operatorname{Ho}(C)$ を構成し、(ある程度の条件の下で) 導来関手が存在することを示すことである.

2 基本的性質

命題 **3.** モデル圏 *C* において

- (1) f が cofibration \iff f は trivial fibration に対して LLP を持つ.
- (2) f が trivial cofibration $\iff f$ は fibration に対して LLP を持つ.
- (3) f が fibraton \iff f は trivial cofibration に対して RLP を持つ.
- (4) f が trivial fibration $\iff f$ は cofibration に対して RLP を持つ.

証明. 同様なため、1のみ示す.

⇒ はモデル圏の定義である. \longleftarrow を示すため, $f: a \to b$ が trivial fibration に対して LLP を持つとする. $f = (a \hookrightarrow x \xrightarrow[p]{\sim} b)$ と分解すれば, 次の実線の可換図式を得る.

$$\begin{array}{ccc}
a & \xrightarrow{i} & x \\
f \downarrow & g & \nearrow & \downarrow & p \\
b & \xrightarrow{id_b} & b
\end{array}$$

故に点線の射 $g: b \to x$ が存在する. これにより次の可換図式を得る.

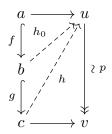
$$\begin{array}{ccc}
a & \xrightarrow{\mathrm{id}_a} a & \xrightarrow{\mathrm{id}_a} a \\
f \downarrow & & \downarrow i & \downarrow f \\
b & \xrightarrow{g} x & \xrightarrow{p} b
\end{array}$$

即ち f は cofibration i のレトラクトであり、従って cofibration である.

命題 **4.** Cof は射の合成について閉じている. 即ち, $f: a \to b$, $g: b \to c$ が cofibration ならば $g \circ f$ も cofibration である.

証明. 命題 3 を使う. $f \colon a \hookrightarrow b, \ g \colon b \hookrightarrow c$ を cofibration とする. $p \colon u \xrightarrow{\sim} v$ を任意の

trivial fibration として次の実線の可換図式を考える.



f が cofibration で p が trivial fibration だから、リフト h_0 : $b \to u$ が存在する. g が cofibration で p が trivial fibration だから、リフト h: $c \to u$ が存在する. 故に、 $g \circ f$ は trivial fibration に対して LLP を持つから、命題 3 により cofibration であることがわかる.

W も合成について閉じているから、 $Cof \cap W$ が合成について閉じていることも分かる.

命題 **5.** Cof (Cof \cap W) は pushout について閉じている.即ち, $f: a \to b$ が cofibration (trivial cofibration) で $g: a \to u$ が射ならば,pushout*1で得られる射 $\widetilde{f}: u \to b \coprod_a u$ も cofibration (trivial cofibration) である.

$$\begin{array}{ccc}
a & \xrightarrow{g} u \\
f \downarrow & & \downarrow \widetilde{f} \\
b & \to b \coprod_{a} u
\end{array}$$

証明. $f: a \hookrightarrow b$ を cofibration, $g: a \to u$ を射とする. 任意の trivial fibration $p: v \xrightarrow{\sim} w$ と次の可換図式を考える.

$$\begin{array}{ccc}
u & \longrightarrow v \\
\downarrow \widetilde{f} & & \downarrow \wr p \\
b \coprod_{a} u & \longrightarrow w
\end{array}$$

f が cofibration だから、リフト $h_0: b \to v$ が存在する.

よって pushout の普遍性から射 $h\colon b\coprod_a u\to v$ が存在し、可換となる.従って命題 3 から \widetilde{f} は cofibration である.trivial cofibration に関しても同様である.

命題 6. 同型射は weak equivalence かつ cofibration かつ fibration である.

証明. これも命題3から容易に分かる.

定義. (1) $a \in C$ が cofibrant \iff 一意な射 $0 \to a$ が cofibration.

(2) $a \in C$ が fibrant \iff 一意な射 $a \to 1$ が fibration.

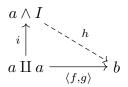
定義. $a \in C$ とする. 普遍性により射 $\langle \operatorname{id}, \operatorname{id} \rangle \colon a \coprod a \to a$ が得られる. この射が $\langle \operatorname{id}, \operatorname{id} \rangle = (a \coprod a \overset{i}{\to} x \overset{\sim}{\to} a)$ と分解するとき,この x を a の cylinder object と呼ぶ. 更に

- (1) i が cofibration のとき good cylinder object と呼ぶ.
- (2) i が cofibration で p が fibration のとき very good cylinder object と呼ぶ.

モデル圏の定義から、各 $a \in C$ の very good cylinder object が少なくとも一つ存在する (一意とは限らない). a の cylinder object を $a \land I$ で表す.

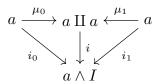
定義. $f, g: a \to b$ が left homotopic (記号 $f \stackrel{l}{\sim} g$ で表す)

 \iff ある cylinder object $a \coprod a \xrightarrow{i} a \land I \xrightarrow{\sim} a$ と射 $h \colon a \land I \to b$ が存在して、次が可換となる.



このときの射 h を f から g への left homotopy という. 更に $a \wedge I$ が (very) good cylinder object のとき, h を (very) good left homotopy という.

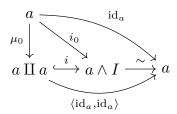
 $a \coprod a \xrightarrow{i} a \wedge I \xrightarrow{\sim} a & a & o$ cylinder object とする. $a \xrightarrow{\mu_0} a \coprod a \xleftarrow{\mu_1} a & c$ coproduct の標準射として $i_0 := i \circ \mu_0$, $i_1 := i \circ \mu_1 : a \to a \wedge I$ とおく.



命題 7. $a \in C$ が cofibrant で $a \coprod a \hookrightarrow a \land I \overset{\sim}{\to} a$ を a の good cylinder object とすると

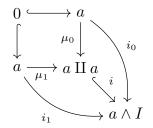
き、 $i_0, i_1: a \to a \land I$ は trivial cofibration である.

証明. 定義から次の図式が可換である.



 $id_a: a \to a$ は weak equivalence だから, i_0 も weak equivalence である. (この証明から分かるように, $i_0 \in W$ は a が cofibrant でなくても成り立つ.)

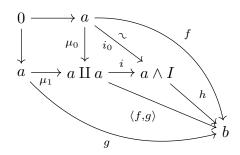
次に, a が cofibrant だから, $0 \rightarrow a$ が cofibration である. 次の図式を考える.



左上の四角は pushout である. よって命題 5 より μ_0 は cofibration であり,従って命題 4 より合成 $i_0=i\circ\mu_0$ も cofibration である. 故に i_0 が trivial cofibration であることが 分かった. i_1 についても同様である.

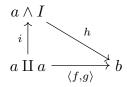
命題 8. $f \stackrel{l}{\sim} g: a \rightarrow b$ のとき、 $f \in W \iff g \in W$ である.

証明. $h: a \land I \to b$ を f から g への left homotopy とする. 定義から次の図式が可換である. (命題 7 で示したように $i_0 \in W$ となる.)

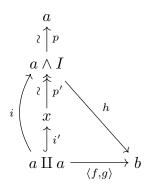


2-out-of-3 より $f \in W \iff h \in W$ が分かる.同様にして $g \in W \iff h \in W$ である. よって $f \in W \iff g \in W$ となる.

命題 **9.** $f \stackrel{l}{\sim} g: a \to b$ のとき、f から $g \sim 0$ good left homotopy が存在する.更にもし b が fibrant ならば、very good left homotopy が存在する.

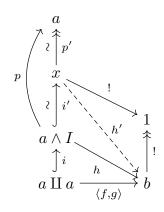


 $(a \amalg a \xrightarrow{i} a \wedge I) = (a \amalg a \underset{i'}{\hookrightarrow} x \underset{p'}{\overset{\sim}{\twoheadrightarrow}} a \wedge I) \ \texttt{と分解する}.$



 $a \coprod a \hookrightarrow_{i'} x \xrightarrow[p \circ p']{\sim} a$ は a の good cylinder object である. 故に $h \circ p' \colon x \to b$ が f から $g \land g$ ood left homotopy となる.

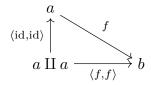
次に b を fibrant として $h: a \wedge I \to b$ を改めて good left homotopy とする. 今度は $(a \wedge I \overset{\sim}{\underset{p}{\rightarrow}} a) = (a \wedge I \overset{\sim}{\underset{i'}{\rightarrow}} x \overset{\sim}{\underset{p'}{\rightarrow}} a)$ と分解する. 2-out-of-3 により i' は trivial cofibration である. これに終対象 1 を加えて、次の実線の可換図式を得る.



 $a \coprod a \underset{i' \circ i}{\hookrightarrow} x \xrightarrow{\sim} a$ は very good cylinder object である. 今 b が fibrant だから,一意な射 $!: b \to 1$ は fibration である. i' が trivial cofibration だから,モデル圏の条件より点線のリフト $h': x \to b$ が存在する.この h' が very good left homotopy である.

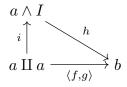
命題 10. a が cofibrant なら、left homotopic は $\operatorname{Hom}_C(a,b)$ の同値関係となる.

証明. $f \colon a \to b$ とする. $a \coprod a \xrightarrow{\langle \mathrm{id}, \mathrm{id} \rangle} a \xrightarrow[\mathrm{id}]{} a$ は cylinder object で、図式

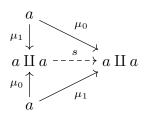


は可換である. 故に $f \stackrel{l}{\sim} f$ である.

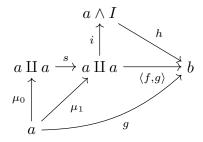
次に $f \stackrel{l}{\sim} g$: $a \to b$ とする. cylinder object $a \coprod a \stackrel{i}{\to} a \wedge I \stackrel{\sim}{\underset{p}{\to}} a$ と h: $a \wedge I \to b$ が存在して、次が可換となる.



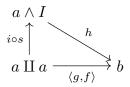
 $a \xrightarrow{\mu_0} a \coprod a \xleftarrow{\mu_1} a$ を標準射とすれば、普遍性から次の射 s を得る.



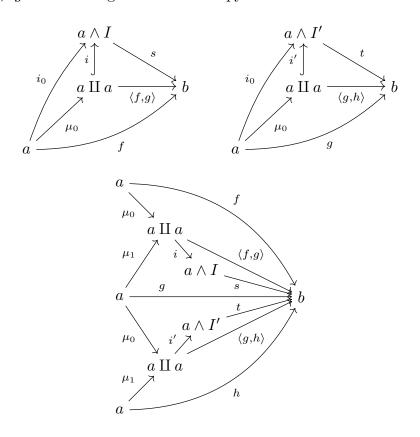
以上を組み合わせて次の図式を得る.



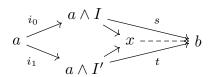
普遍性により $\langle f,g \rangle \circ s = \langle g,f \rangle$ である.また $a \coprod a \xrightarrow{i \circ s} a \wedge I \xrightarrow{\sim}_p a$ は cylinder object である.よって次の図式が得られて $g \overset{l}{\sim} f$ が分かる.



最後に $f\overset{l}{\sim}g$ かつ $g\overset{l}{\sim}h$ とする.命題 g により f から g への good left homotopy $s\colon a\wedge I\to b,\ g$ から h への good left homotopy $t\colon a\wedge I'\to b$ が取れる.

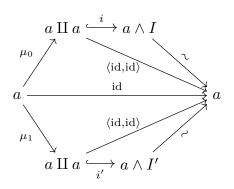


 $a \wedge I \leftarrow a \rightarrow a \wedge I'$ \mathcal{O} pushout $\mathcal{E} x \ \mathcal{E}$ \mathcal{T} \mathcal{T} .

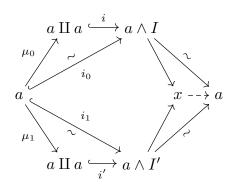


 $\mathcal{L} \mathcal{O} x \bowtie a \mathcal{O} \text{ cylinder object } \mathcal{C} \mathcal{B} \mathcal{S}.$

二) 定義から,次の図式が可換である.

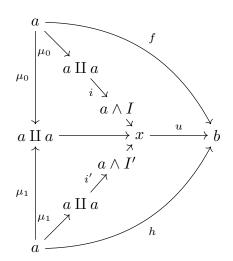


よって pushout の普遍性により射 $x \to a$ が得られる.



trivial cofibration の pushout は trivial cofibration であることと、2-out-of-3 により $x \to a$ が weak equivalence だと分かる. よって x は a の cylinder object である.

この x と先の図式を組み合わせて次の図式が得られる.



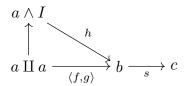
この図式から $u: x \to b$ が f から h への left homotopy であることが分かる.

定義. C をモデル圏, $a,b \in C$ を対象とする. $\operatorname{Hom}_C(a,b)$ 上の同値関係 R を、 $\stackrel{l}{\sim}$ で生成されるものとして、 $\pi^l(a,b) := \operatorname{Hom}_C(a,b)/R$ と定める.

今示した様に、a が cofibrant ならば $\pi^l(a,b) = \operatorname{Hom}_C(a,b)/\overset{l}{\sim}$ である.

命題 **11.** $s: b \to c$ とする. このとき $f \stackrel{l}{\sim} g: a \to b$ ならば $s \circ f \stackrel{l}{\sim} s \circ g: a \to c$ である. (よって写像 $s_*: \pi^l(a,b) \ni [f] \mapsto [s \circ f] \in \pi^l(a,c)$ は well-defined である.) 更に a が cofibrant で $s: b \stackrel{\sim}{\to} c$ が trivial fibration であるとする. このとき s_* は全単射である.

証明. $f \stackrel{l}{\sim} g: a \to b$ とする. f から $g \curvearrowright \mathcal{O}$ left homotopy $h: a \land I \to b$ を取る.

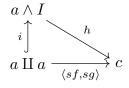


このとき $s\circ h$ は $s\circ f$ から $s\circ g$ への left homotopy である.よって $s\circ f\overset{l}{\sim} s\circ g\colon a\to c$ である.従って [f]=[g] とすると $f\overset{l}{\sim} f_1\overset{l}{\sim}\cdots\overset{l}{\sim} f_n\overset{l}{\sim} g$ とできるが,このとき $s\circ f\overset{l}{\sim} s\circ f_1\overset{l}{\sim}\cdots\overset{l}{\sim} s\circ f_n\overset{l}{\sim} s\circ g$ となり $[s\circ f]=[s\circ g]$ である.よって s_* は well-defined である.

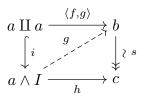
次に a が cofibrant で s: $b \xrightarrow{\sim} c$ が trivial fibration であるとする. s_* の全射性を示すため,f: $a \to c$ を任意に取る. 次の可換図式を考えれば,リフト g: $a \to b$ が得られる.

このとき $s_*([g]) = [s \circ g] = [f]$ である.

 s_* の単射性を示すため, $f,g\colon a\to b$ が $s\circ f\overset{l}{\sim} s\circ g$ を満たすとする.命題 9 により good cylinder object $a\amalg a\hookrightarrow a\wedge I\overset{\sim}{\to} a$ と $h\colon a\wedge I\to c$ が存在して次が可換となる.



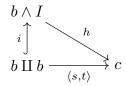
次の可換図式を考えれば、リフト $g: a \wedge I \rightarrow b$ が得られる.



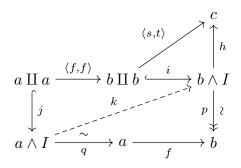
このgがfからgへの left homotopy である.

命題 12. $f: a \to b$ を射として、 $c \in C$ が fibrant であるとする.このとき $s \stackrel{l}{\sim} t: b \to c$ ならば $s \circ f \stackrel{l}{\sim} t \circ f: a \to c$ である.(よって写像 $f^*: \pi^l(b,c) \ni [s] \longmapsto [s \circ f] \in \pi^l(a,c)$ は well-defined である.)

証明. $s \stackrel{l}{\sim} t$: $b \to c$ とする. 命題 9 により, very good cylinder object $b \coprod b \hookrightarrow_i b \land I \stackrel{\sim}{\underset{p}{\to}} b$ と h: $b \land I \to c$ が存在して次が可換となる.



a の good cylinder object $a \coprod a \hookrightarrow_j a \land I \overset{\sim}{\underset{q}{\rightarrow}} a$ を取る. 次の図式の実線部分は可換である.



よってリフト $k: a \wedge I \to b \wedge I$ が存在する.このとき $h \circ k$ が $s \circ f$ から $t \circ f$ への left homotopy である.

命題 13. fibrant な $c \in C$ に対して $\pi^l(b,c) \times \pi^l(a,b) \ni ([s],[f]) \longmapsto [s \circ f] \in \pi^l(a,c)$ は well-defined である.

証明. $f \stackrel{l}{\sim} g \colon a \to b, \ s \stackrel{l}{\sim} t \colon b \to c$ に対して $[s \circ f] = [t \circ g]$ を示せばよい. c が fibrant

だから命題 12 により $s\circ f\overset{l}{\sim} t\circ f$ である.また命題 11 により $t\circ f\overset{l}{\sim} t\circ g$ である.よって $[s\circ f]=[t\circ g]$ である.

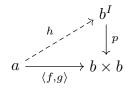
双対的に path object, right homotopic を定義する.

定義. $a \in C$ とする. 普遍性により射 $\langle \operatorname{id}, \operatorname{id} \rangle \colon a \to a \times a$ が得られる. この射が $\langle \operatorname{id}, \operatorname{id} \rangle = (a \stackrel{\sim}{\to} x \stackrel{p}{\to} a \times a)$ と分解するとき,この x を a の path object と呼ぶ. 更に

- (1) p が fibration のとき good path object と呼ぶ.
- (2) iが cofibrationでpが fibrationのとき very good path object と呼ぶ.

aの path object を a^I で表す.

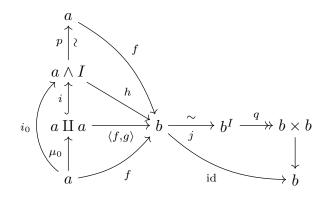
定義. $f,g:a\to b$ が right homotopic (記号 $f\overset{r}{\sim}g$ で表す) \Longleftrightarrow ある path object $b\overset{\sim}{\to}b^I\overset{p}{\to}b\times b$ と射 $h:a\to b^I$ が存在して、次が可換となる.



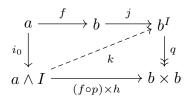
勿論, path object に対しても cylinder object と同様な命題が成り立つ (省略).

命題 **14.** $f,g:a\to b$ とする. a が cofibrant ならば「 $f\overset{l}{\sim}g$ ならば $f\overset{r}{\sim}g$ 」である. 同様にして、b が fibrant ならば「 $f\overset{r}{\sim}g$ ならば $f\overset{l}{\sim}g$ 」である.

証明. a が cofibrant で, $f \overset{l}{\sim} g: a \to b$ とする.命題 9 より good cylinder object $a \coprod a \overset{}{\hookrightarrow} a \wedge I \overset{\sim}{\underset{j}{\rightarrow}} a$ と left homotopy $h: a \wedge I \to b$ が取れる.b の good path object $b \overset{\sim}{\underset{j}{\rightarrow}} b^I \overset{}{\twoheadrightarrow} b \times b$ を取る.次の図式が得られる.



ここから次の実線の可換図式が得られる.



a が cofibrant だから,命題 7 により i_0 は trivial cofibration である.q は fibration だから,リフト $k: a \wedge I \to b^I$ が得られる.このとき $k \circ i_1$ が right homotopy である.

従って a が cofibrant で b が fibrant ならば、 $\stackrel{l}{\sim}=\stackrel{r}{\sim}$ かつ $\pi^l(a,b)=\pi^r(a,b)$ である. よってこの場合には、これらを単に \sim や $\pi(a,b)$ と書く.

命題 **15.** a,b を cofibrant かつ fibrant として $f:a\to b$ を射とする. このとき f が weak equivalence

 \iff ある射 $g\colon b\to a$ が存在して $g\circ f\sim \mathrm{id}_a$ かつ $f\circ g\sim \mathrm{id}_b$ となる. (このとき g を f の homotopy inverse という.)

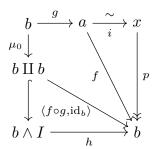
証明. (⇒) $f: a \to b$ を weak equivalence とする. $f = (a \overset{\sim}{\underset{i}{\hookrightarrow}} x \overset{\rightarrow}{\underset{p}{\longrightarrow}} b)$ と分解する. 2-out-of-3 により p も weak equivalence である.

a が fibrant だから、次の図式を考えれば $g: x \to a$ で $g \circ i = \mathrm{id}_a$ となるものを得る.

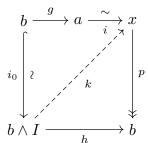
次に命題 11 の双対により i^* : $\pi(x,x) \to \pi(a,x)$ は全単射である. $i^*([i\circ g]) = [i\circ g\circ i] = [i]$, $i^*([\mathrm{id}_a]) = [i]$ だから $[i\circ g] = [\mathrm{id}_x]$ となり,即ち $i\circ g \sim \mathrm{id}_x$ である.故に g が i の homotopy inverse であることが分かった.同様にして p の homotopy inverse h が存在 することも分かる.このとき $g\circ h$ が $f=p\circ i$ の homotopy inverse である.

(⇐=) $g \circ f \sim \mathrm{id}_a$, $f \circ g \sim \mathrm{id}_b$ とする. $f = (a \overset{\sim}{\underset{i}{\hookrightarrow}} x \overset{\rightarrow}{\underset{p}{\longrightarrow}} b)$ と分解する. p が weak equivalence であることを示せばよい. $h: b \wedge I \to b$ を $f \circ g$ から id_b への good left

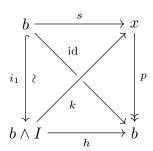
homotopy とすると次の可換図式を得る.



左の縦の射の合成 i_0 は命題 7 により trivial cofibration である. 故にリフト $k \colon b \wedge I \to x$ が存在する.



 $s := k \circ i_1$ とおけば $p \circ s = h \circ i_1 = \mathrm{id}_b$ である.



ここで、 $i: a \xrightarrow{\sim} x$ は weak equivalence だから、homotopy inverse $r: x \to a$ を持つ、 $f = p \circ i$ だから $f \circ r = p \circ i \circ r \sim p \circ \mathrm{id}_x = p$ となる.また k, s の取り方から k は $i \circ g$ から s への left homotopy であり、

$$s \circ p \sim i \circ q \circ p \sim i \circ q \circ f \circ r \sim i \circ \mathrm{id}_a \circ r = i \circ r \sim \mathrm{id}_x$$

となる. id は weak equivalence だから、命題 8 より $s \circ p$ も weak equivalence である.

また次の図式が可換となる.

$$\begin{array}{ccc}
x & \xrightarrow{\mathrm{id}_x} x & \xrightarrow{\mathrm{id}_x} x \\
p \downarrow & s \circ p \downarrow \downarrow & \downarrow p \\
b & \xrightarrow{s} x & \xrightarrow{p} b
\end{array}$$

即ち p は weak equivalence $s\circ p$ の retract である. 故にモデル圏の定義から p も weak equivalence である.

3 ホモトピー圏の構成

定義. モデル圏 C に対して、充満部分圏 $C_c, C_f, C_{cf} \subset C$ を以下により定める.

- (1) $Ob(C_c) := \{a \in C \mid a \ \text{it cofibrant}\}.$
- (2) $Ob(C_f) := \{a \in C \mid a \text{ l\sharp fibrant}\}.$
- (3) $Ob(C_{cf}) := \{ a \in C \mid a \text{ it cofibrant かつ fibrant} \}.$

更に,圏 $\pi C_c, \pi C_f, \pi C_{cf}$ を以下により定める.(命題 13 に注意する.)

- (1) $Ob(\pi C_c) := Ob(C_c) \, \mathfrak{C}, \, \operatorname{Hom}_{\pi C_c}(a, b) := \pi^r(a, b).$
- (2) $Ob(\pi C_f) := Ob(C_f)$ \mathcal{C} , $Hom_{\pi C_f}(a, b) := \pi^l(a, b)$.
- (3) $Ob(\pi C_{cf}) := Ob(C_{cf})$ \mathfrak{C} , $Hom_{\pi C_{cf}}(a, b) := \pi(a, b)$.

各対象 $a \in C$ に対して、分解 $(0 \stackrel{!}{\to} a) = (0 \hookrightarrow Q(a) \stackrel{\sim}{\underset{p_a}{\to}} a)$ を考える。 つまり Q(a) は cofibrant である。 但し、cofibrant な a に対しては Q(a) := a、 $p_a := \mathrm{id}_a$ と取るようにしておく。

命題 **16.** この Q は関手 $Q: C \to \pi C_c$ を定める.

証明. まず C の射 $f: a \to b$ に対して Q(f) を定義する. f, p_a, p_b と 0 から次の実線の可換図式を得る.

$$0 \xrightarrow{f'} Q(b)$$

$$\downarrow \qquad \qquad \downarrow \\ Q(a) \xrightarrow{p_a} a \xrightarrow{f} b$$

 $0 \to Q(a)$ が cofibration で p_b が trivial fibration だから、 リフト $f' \colon Q(a) \to Q(b)$ が存

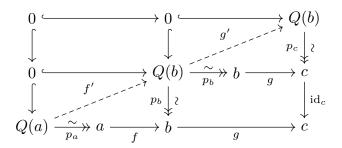
在する.このような $f': Q(a) \to Q(b)$ は right homotopic を除いて一意である.

 (\cdot,\cdot) 今 Q(a) が cofibrant だから、命題 14 より left homotopic を除いて一意である ことを示せばよい.それは命題 11 から従う.

よって $Q(f):=[f']\in\pi^r(a,b)=\mathrm{Hom}_{\pi C_c}(a,b)$ と定義することができる.後はこの Q が関手 $C\to\pi C_c$ となることを示せばよい.

まず $Q(\mathrm{id}_a) = [\mathrm{id}_{Q(a)}]$ は明らかである.

C の射 $f: a \rightarrow b, g: b \rightarrow c$ を取る. 次の可換図式を考える.



図式から明らかに、 $Q(g \circ f) = Q(g) \circ Q(f)$ である.

この Q を cofibrant replacement functor と呼ぶ. また p_a : $Q(a) \stackrel{\sim}{\to} a$ を a の cofibrant resolution という.

例 17. $\mathbf{Ch}_{\geq 0}(R)$ の場合, $X=\{X_n\}\in\mathbf{Ch}(R)$ が cofibrant であるとは各 X_n が射影的 であることである. よって R-加群 M を鎖複体

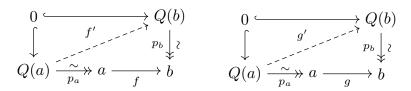
$$\cdots \to 0 \to 0 \to M$$

と同一視して cofibrant resolution $0 \hookrightarrow Q(M) \overset{\sim}{\twoheadrightarrow} M$ を取れば,Q(M) は M の射影分解 である.

命題 18. $Q: C \to \pi C_c$ を C_f に制限することで、関手 $Q: \pi C_f \to \pi C_{cf}$ が得られる.

証明. $a\in C$ を fibrant とする. $0\hookrightarrow Q(a)\stackrel{\sim}{\twoheadrightarrow} a \twoheadrightarrow 1$ より, Q(a) は fibrant かつ cofibrant である. よって関手 $Q|_{C_f}:C_f\to\pi C_{cf}$ が得られる.

後は、 $a,b \in C$ が fibrant で、 $f \stackrel{l}{\sim} g \colon a \to b$ のとき Q(f) = Q(g) を示せばよい.



今 b が fibrant だから、命題 12 により $f\circ p_a\stackrel{l}{\sim} g\circ p_a$ である.即ち $[f\circ p_a]=[g\circ p_a]$ である.よって命題 11 により Q(f)=Q(g) が分かる.

双対的に、fibrant replacement functor $R\colon C\to \pi C_f$ が $a\overset{\sim}{\underset{i_a}{\hookrightarrow}}R(a) \to 1$ により定まる.これにより関手 $R\colon \pi C_c\to \pi C_{cf}$ が定義される.よって関手 $RQ\colon C\to \pi C_{cf}$ が得られる.

定義. モデル圏 C のホモトピー圏 $\operatorname{Ho}(C)$ を以下のように定める.

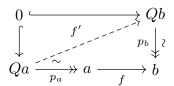
- Ob(Ho(C)) := Ob(C).
- $\operatorname{Hom}_{\operatorname{Ho}(C)}(a,b) := \operatorname{Hom}_{\pi C_{c,f}}(RQa, RQb).$

また関手 $P: C \to Ho(C)$ を以下のように定める.

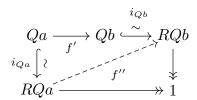
- 対象 $a \in C$ に対して P(a) := a.
- $f \in \text{Hom}_C(a,b)$ に対して P(f) := RQ(f).

命題 19. $f \in C$ が weak equivalence $\iff P(f)$ が同型射.

証明. $f: a \rightarrow b$ を C の射とする. 次の可換図式のリフト f' を取る.



このとき Q(f) = [f'] である. さらに次の可換図式のリフト f'' を取る.



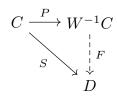
このとき P(f) = RQ(f) = [f''] である. RQa, RQb は cofibrant かつ fibrant だから, 2-out-of-3 と命題 15 により

$$f$$
 が weak equivalence $\iff f''$ が weak equivalence
$$\iff f''$$
が homotopy inverse を持つ
$$\iff P(f)$$
 が同型

となる. □

定義. C を圏, $W \subset \text{Mor}(C)$ とする. C の W による局所化とは組 $\langle W^{-1}C, P \rangle$ であって以下を満たすものである.

- (1) $W^{-1}C$ は圏, $P: C \to W^{-1}C$ は関手であり, $f \in W$ に対して P(f) は同型射である.
- (2) 関手 $S: C \to D$ が同じ条件 $(f \in W \text{ に対して } S(f) \text{ は同型射})$ を満たすならば、関 手 $F: W^{-1}C \to D$ が一意に存在して $F \circ P = S$ となる.



定理 20. モデル圏 C に対して、 $\langle \text{Ho}(C), P \rangle$ は C の W による局所化である.

証明. まず命題 19 より, f が C の weak equivalence ならば P(f) は同型である.

次に D を圏, $S: C \to D$ を関手で「 $f \in W$ に対して S(f) は同型射」を満たすとする.

※ 証明に入る前に次のことを確認しておく. $f: a \to b$ を C の射とする. 命題 19 の 証明のように $f'': RQa \to RQb$ を取る.

$$RQa \xrightarrow{f''} RQb$$

$$i_{Qa} \uparrow \wr \qquad i_{Qb} \uparrow \wr$$

$$Qa \xrightarrow{f'} Qb$$

$$p_a \downarrow \wr \qquad p_b \downarrow \wr$$

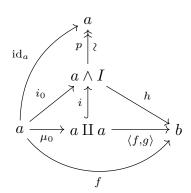
$$a \xrightarrow{f} b$$

「 $f \in W$ に対して Sf は同型射」だから $Sf = Sp_b \circ Si_{Qb}^{-1} \circ Sf'' \circ Si_{Qa} \circ Sp_a^{-1}$ が成り立つ.

 $k \in \operatorname{Hom}_{\operatorname{Ho}(C)}(a,b) = \operatorname{Hom}_{\pi C_{cf}}(RQa,RQb)$ とする.ある C の射 $h \colon RQa \to RQb$ を使って k = [h] と書ける.この h を使って $Fk := Sp_b \circ Si_{Qb}^{-1} \circ Sh \circ Si_{Qa} \circ Sp_a^{-1}$ と定める.これは well-defined である.

 $f \stackrel{l}{\sim} g \colon a \to b$ に対して Sf = Sg であることを示せばよい. good cylinder

object $a \coprod a \hookrightarrow_i a \wedge I \xrightarrow{\sim}_p b$ と $h \colon a \wedge I \to b$ が存在して次が可換となる.



 $p\circ i_0=\mathrm{id}_a=p\circ i_1$ だから $Sp\circ Si_0=Sp\circ Si_1$ となる.今p が weak equivalence だから Sp は同型射となり $Si_0=Si_1$ が分かる.故に $Sf=Sh\circ Si_0=Sh\circ Si_1=Sg$ である.

対象 $a\in \operatorname{Ho}(C)$ に対して F(a):=S(a) とすれば関手 $F\colon \operatorname{Ho}(C)\to D$ が定まる.このとき $f\in \operatorname{Hom}_C(a,b)$ に対して上のように $f''\colon RQa\to RQb$ を取れば

$$FP(f) = F[f''] = Sp_b \circ Si_{Qb}^{-1} \circ Sf'' \circ Si_{Qa} \circ Sp_a^{-1} = S(f)$$

となるから FP = S である.

後はこのような F の一意性を示せばよい. k=P(f) と書ける射 $k\in \operatorname{Hom}_{\operatorname{Ho}(C)}(a,b)$ に対しては,上から分かるように F(P(f))=S(f) でなければならない.従って,任意の 射 $k\in \operatorname{Hom}_{\operatorname{Ho}(C)}(a,b)$ が P(f) $(f\in \operatorname{Mor}(C))$ の合成で書けることを示せばよい.

 $a,b \in C$ に対して RQa, RQb は cofibrant かつ fibrant だから、 $f: RQa \to RQb$ に対して上のように f'' を取れば f'' = f となる.

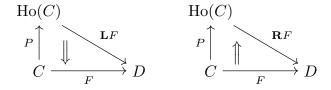
$$\begin{array}{ccc} RQRQa \stackrel{f}{\longrightarrow} RQRQb \\ \operatorname{id} = i_{QRQa} & & & & & & \\ QRQa & & & & & & \\ QRQa & & & & & & \\ \operatorname{id} = p_{RQa} & & & & & & \\ RQa & & & & & & \\ \end{array}$$

故に $P \colon \operatorname{Hom}_{C}(RQa,RQb) \to \operatorname{Hom}_{\operatorname{Ho}(C)}(RQa,RQb)$ は全射であることが分かる.一方 $a \overset{\sim}{\underset{p_{a}}{\leftarrow}} Qa \overset{\sim}{\underset{i_{Qa}}{\hookrightarrow}} RQa, \ b \overset{\sim}{\underset{p_{b}}{\leftarrow}} Qb \overset{\sim}{\underset{i_{Qb}}{\hookrightarrow}} RQb$ から $\operatorname{Ho}(C)$ の同型 $P(i_{Qa}) \circ P(p_{a})^{-1}, \ P(p_{b}) \circ$

 $P(i_{Qb})^{-1}$ が得られる.これにより全単射 $\operatorname{Hom}_{\operatorname{Ho}(C)}(RQa,RQb) \to \operatorname{Hom}_{\operatorname{Ho}(C)}(a,b)$ が $f \mapsto P(p_b) \circ P(i_{Qb})^{-1} \circ f \circ P(i_{Qa}) \circ P(p_a)^{-1}$ により得られる.以上により全射 $\operatorname{Hom}_C(RQa,RQb) \to \operatorname{Hom}_{\operatorname{Ho}(C)}(a,b)$ が得られる.即ち,任意の $k \in \operatorname{Hom}_{\operatorname{Ho}(C)}(a,b)$ はある $f \in \operatorname{Hom}_C(RQa,RQb)$ により $k = P(p_b) \circ P(i_{Qb})^{-1} \circ P(f) \circ P(i_{Qa}) \circ P(p_a)^{-1}$ と表される.

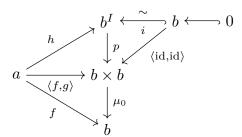
4 導来関手

定義. C をモデル圏,D を圏, $F: C \to D$ を関手とする.局所化 $P: C \to \operatorname{Ho}(C)$ に沿った F の右 Kan 拡張 $\mathbf{L}F:=P^{\ddagger}F$ を F の左導来関手という.局所化 $P: C \to \operatorname{Ho}(C)$ に沿った F の左 Kan 拡張 $\mathbf{R}F:=P^{\dagger}F$ を F の右導来関手という.



補題 **21.** $F: C_c \to D$ を関手とし、 $f \in C_c$ が trivial cofibration ならば Ff は同型射であるとする.このとき C_c の射 $f,g: a \to b$ が right homotopic ならば Ff = Fg である.

証明. b が cofibrant だから、命題 9 の双対により very good path object $b \overset{\sim}{\underset{i}{\hookrightarrow}} b^I \underset{p}{\xrightarrow{}} b \times b$ と right homotopy $h \colon a \to b^I$ が取れる. $\mu_0, \mu_1 \colon b \times b \to b$ を標準射影とすれば次の可換 図式を得る.



b が cofibrant だから b^I も cofibrant となる. よって仮定から Fi は同型射である. $\langle \mathrm{id}, \mathrm{id} \rangle = p \circ i$ だから $F\langle \mathrm{id}, \mathrm{id} \rangle = Fp \circ Fi$ となり、よって $Fp = F\langle \mathrm{id}, \mathrm{id} \rangle \circ Fi^{-1}$ であ

る. $f = \mu_0 \circ p \circ h$, $g = \mu_1 \circ p \circ h$ だから

$$Ff = F\mu_0 \circ Fp \circ Fh$$

$$= F\mu_0 \circ F\langle \operatorname{id}, \operatorname{id} \rangle \circ Fi^{-1} \circ Fh$$

$$= F(\operatorname{id}) \circ Fi^{-1} \circ Fh$$

$$= F\mu_1 \circ F\langle \operatorname{id}, \operatorname{id} \rangle \circ Fi^{-1} \circ Fh$$

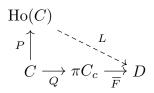
$$= F\mu_1 \circ Fp \circ Fh$$

$$= Fq$$

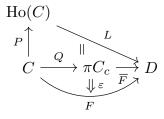
である.

定理 22. C をモデル圏, D を圏, $F: C \to D$ を関手とする. $a,b \in C$ が cofibrant で $f: a \to b$ が weak equivalence ならば, Ff は同型射であるとする. このとき右 Kan 拡張 $P^{\ddagger}F$, 即ち F の左導来関手が存在する.

証明. F の C_c への制限 $F|_{C_c}$ に補題 21 を適用して、関手 \overline{F} : $\pi C_c \to D$ を得る. $f \in C$ を weak equivalence とすれば $\overline{F}Q(f) \in D$ は同型射である. よって局所化 $P: C \to \operatorname{Ho}(C)$ の普遍性により、関手 L: $\operatorname{Ho}(C) \to D$ が一意に存在して $LP = \overline{F}Q$ となる.



 $a\in C$ に対して $\varepsilon_a:=F(p_a)$: $\overline{F}Qa\to Fa$ と定める. これにより自然変換 ε : $LP=\overline{F}Q\Rightarrow F$ が定まる.



:.`) C の射 $f: a \to b$ に対して、次を可換とするような C の射 f' を取る.

これに関手Fを適用して次の可換図式を得る.

$$FQa \xrightarrow{F(p_a)} Fa$$

$$F(f') \downarrow \qquad \qquad \downarrow F(f)$$

$$FQb \xrightarrow{F(p_b)} Fb$$

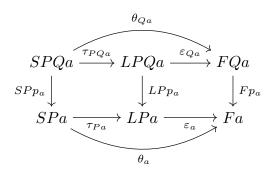
今 Q の定義より Q(f)=[f'] であり、よって $\overline{F}Q(f)=F(f')$ となる.よって上の図式を書きかえることで次の可換図式を得る.

即ち ε : $\overline{F}Q \Rightarrow F$ は自然変換である.

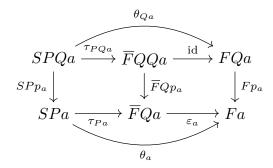
 $\langle L, \varepsilon \rangle$ が P に沿った F の右 Kan 拡張であることを示す.その為に $S\colon \mathrm{Ho}(C) \to D$ を 関手, $\theta\colon SP \Rightarrow F$ を自然変換とする.次の等式を満たす τ が一意に存在することを示せばよい.

まず一意性を示すため、 $\tau: S \Rightarrow L$ が $\varepsilon \circ \tau_P = \theta$ を満たすとする. $a \in C$ に対して次の図

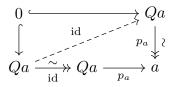
式が可換となる.



 $p_a\colon Qa \to a$ は weak equivalence だから, $SPp_a\colon SPQa \to SPa$ は同型射である.また Qa は cofibrant だから $p_{Qa}=\mathrm{id}_{Qa}$ であり,よって $\varepsilon_{Qa}=Fp_{Qa}=\mathrm{id}$ である. $LP=\overline{F}Q$ もあわせて次の図式を得る.



ここで Q の定義から, $Qp_a = [id]$ である.



よって $\overline{F}Qp_a=\mathrm{id}$ が分かる. 故に τ は、任意の $a\in C$ に対して

$$\tau_a = \tau_{Pa} = \left(SPa \xrightarrow{SPp_a^{-1}} SPQa \xrightarrow{\theta_{Qa}} \overline{F}Qa = LPa\right)$$

を満たさなければならない.従って τ はもし存在すれば一意である. 逆に τ をこの合成で定義すれば, $\tau\colon S\Rightarrow L$ は自然変換である. ·..) 先ほどと同様にして次が可換である.

$$SPQa \xrightarrow{SPp_a} SPa$$

$$SP\widetilde{f} \downarrow \qquad \qquad \downarrow SPf$$

$$SPQb \xrightarrow{SPp_b} SPb$$

また θ が自然変換だから次が可換となる.

$$SP(Qa) \xrightarrow{\theta_{Qa}} F(Qa)$$

$$SP\widetilde{f} \downarrow \qquad \qquad \downarrow F\widetilde{f} = FQf$$

$$SP(Qb) \xrightarrow[\theta_{Qb}]{} F(Qb)$$

故に τ も自然変換である.

以上により $\langle L, \varepsilon \rangle$ が P に沿った F の右 Kan 拡張であることが分かった.

定理 23. 定理 22 の条件の下で存在する右 Kan 拡張は絶対右 Kan 拡張である.

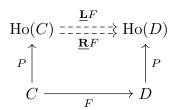
証明. $G: D \to X$ を関手とする. このとき $GF: C \to X$ は前定理の条件 $(a,b \in C)$ が cofibrant で $f: a \to b$ が weak equivalence ならば, GFf は同型射である) を満たす. 故に右 Kan 拡張 $\langle P^{\ddagger}(GF), \varepsilon' \rangle$ が存在するが, 定理 22 の証明での構成法からこれは $P^{\ddagger}(GF) = G(P^{\ddagger}F)$, $\varepsilon' = G\varepsilon$ を満たすことが分かる. 即ち任意の関手 $G: D \to X$ と交換するから $P^{\ddagger}F$ は絶対右 Kan 拡張である.

双対的に

定理 24. C をモデル圏, D を圏, $F: C \to D$ を関手とする. $a,b \in C$ が fibrant で $f: a \to b$ が weak equivalence ならば, Ff は同型射であるとする. このとき左 Kan 拡張 $P^{\dagger}F$, 即ち F の右導来関手が存在する. この $P^{\dagger}F$ は絶対左 Kan 拡張である.

定義. C,D をモデル圏、 $F:C\to D$ を関手とする. $P:C\to \operatorname{Ho}(C)$ 、 $P:D\to \operatorname{Ho}(D)$

を局所化とする.



このとき $PF: C \to \text{Ho}(D)$ の左導来関手を F の total left derived functor といい $\underline{\mathbf{L}}F$ で表す. また PF の右導来関手を F の total right derived functor といい $\mathbf{R}F$ で表す.

補題 **25.** $C, \widetilde{C}, D, \widetilde{D}$ を圏, $S: C \to \widetilde{C}, T: D \to \widetilde{D}$ を関手, $F \dashv G: C \to D$ を随伴関手とする.

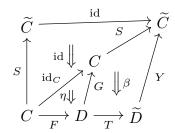
$$\widetilde{C} \xleftarrow{-\cdots} \widetilde{\bot} \widetilde{D} \\
S \uparrow \qquad T^{\dagger}(SG) \qquad \uparrow T \\
C \xleftarrow{\bot} C \xrightarrow{G} D$$

絶対右 Kan 拡張 $S^{\ddagger}(TF)$, 絶対左 Kan 拡張 $T^{\dagger}(SG)$ が存在するとする. このとき $S^{\ddagger}(TF)\dashv T^{\dagger}(SG)\colon \widetilde{C}\to \widetilde{D}$ である.

証明. 随伴 $F \dashv G$ の unit, counit を η : id \Rightarrow GF, ε : $FG \Rightarrow$ id とする. また絶対右 Kan 拡張 $X := S^{\ddagger}(TF)$, 絶対左 Kan 拡張 $Y := T^{\dagger}(SG)$ が存在するとする.

$$\begin{array}{ccc} \widetilde{C} \stackrel{X}{\longrightarrow} \widetilde{D} & \widetilde{C} \stackrel{Y}{\longleftarrow} \widetilde{D} \\ s \uparrow & \downarrow \alpha & \uparrow_T & s \uparrow & \uparrow_\beta & \uparrow_T \\ C \stackrel{F}{\longrightarrow} D & C \stackrel{C}{\longleftarrow} D \end{array}$$

次の合成で自然変換 $S \Rightarrow YTF$ を得る.



今 X は絶対右 Kan 拡張だから, $S^{\ddagger}(YTF)=YX$ である.よって $S^{\ddagger}(YTF)$ の普遍性から自然変換 $\tilde{\gamma}\colon \operatorname{id} \Rightarrow YX$ を得る.

$$\widetilde{C} \xrightarrow{\operatorname{id}} \widetilde{C} \qquad \widetilde{C} \xrightarrow{\operatorname{id}} \widetilde{C}$$

$$\downarrow S \downarrow \operatorname{id}_{C} \nearrow \uparrow_{G} \downarrow \beta / Y = S \downarrow \alpha \qquad X \nearrow \eta \downarrow / Y$$

$$\downarrow C \xrightarrow{F} D \xrightarrow{T} \widetilde{D} \qquad C \xrightarrow{F} D \xrightarrow{T} \widetilde{D}$$

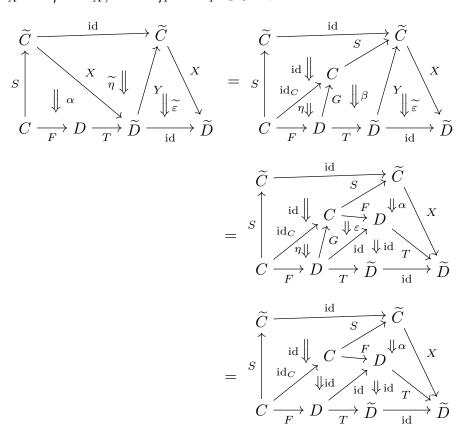
同様にして $T^{\dagger}(XSG)$ の普遍性から自然変換 $\widetilde{\epsilon}$: $XY \Rightarrow id$ を得る.

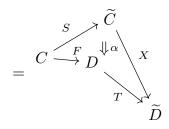
$$C \xrightarrow{S} \widetilde{C} X = C \xrightarrow{F} D \xrightarrow{X} \widetilde{C} X$$

$$D \xrightarrow{T} \widetilde{D} \xrightarrow{\operatorname{id}} \widetilde{D} D \xrightarrow{\operatorname{id}} \widetilde{D}$$

$$D \xrightarrow{T} \widetilde{D} \xrightarrow{\operatorname{id}} \widetilde{D}$$

このとき $\widetilde{\varepsilon}_X \circ X\widetilde{\eta} = \mathrm{id}_X, \ Y\widetilde{\varepsilon} \circ \widetilde{\eta}_Y = \mathrm{id}_Y$ を示せばよい.





であるが、右 Kan 拡張 $\langle X, \alpha \rangle$ の普遍性から $\widetilde{\varepsilon}_X \circ X\widetilde{\eta} = \mathrm{id}_X$ が分かる.同様にして $Y\widetilde{\varepsilon} \circ \widetilde{\eta}_Y = \mathrm{id}_Y$ も分かる.

定理 **26.** C, D をモデル圏, $F \dashv G: C \to D$ を随伴関手とする. F は C の cofibrant object の間の weak equivalence を D の weak equivalence に送り, G は D の fibrant object の間の weak equivalence を C の weak equivalence に送るとする. このとき $\mathbf{L}F, \mathbf{R}G$ が存在し $\mathbf{L}F \dashv \mathbf{R}G: \operatorname{Ho}(C) \to \operatorname{Ho}(D)$ は随伴である.

証明. $P: D \to \operatorname{Ho}(D)$ を局所化とすれば $PF: C \to \operatorname{Ho}(D)$ は cofibrant object の間の weak equivalence を同型に送る. よって定理 22 により左導来関手 $\underline{\mathbf{L}}F$ が存在する. 同様 にして右導来関手 $\underline{\mathbf{R}}G$ も存在する. 定理 23 により,これらは絶対 Kan 拡張である. 故 に補題 25 により $\mathbf{L}F \dashv \mathbf{R}G$ である.

命題 27. モデル圏 C, D の間の随伴 $F \dashv G$: $C \to D$ に対して次が成り立つ.

- (1) F が cofibration を保つ \iff G が trivial fibration を保つ.
- (2) F が trivial cofibration を保つ \iff G が fibration を保つ.

証明. 全て同様なので、 $1 の \Longrightarrow 0$ み示す.

F が cofibration を保つとして,D の射 $f: a \to b$ を trivial fibration とする.Gf が cofibration に対して RLP を持つ事を示せばよい.そこで $g: c_0 \to c_1$ を cofibration としてして,次の図式が可換であるとする.

$$\begin{array}{ccc}
c_0 & \longrightarrow Ga \\
g \downarrow & & \downarrow Gf \\
c_1 & \longrightarrow Gb
\end{array}$$

随伴 $F \dashv G$ により、次の実線の可換図式が得られる.

$$\begin{array}{ccc}
Fc_0 \longrightarrow a \\
Fg \downarrow & f \downarrow \\
Fc_1 \longrightarrow b
\end{array}$$

Fg が cofibration で,f が trivial fibration だから,点線の射が存在して可換となる.このとき再び随伴により

$$\begin{array}{ccc}
c_0 & \longrightarrow Ga \\
g \downarrow & & \downarrow Gf \\
c_1 & \longrightarrow Gb
\end{array}$$

が可換となる.

定義. モデル圏 C,D の間の随伴 $F \dashv G: C \to D$ に対して,以下の条件が同値であることが命題 27 により分かる.

- Fが cofibration と trivial cofibration を保つ.
- *G* が fibration と trivial fibration を保つ.
- F が cofibration を保ち、G が fibration を保つ.
- F が trivial cofibration を保ち, G が trivial fibration を保つ.

これらの条件を満たす随伴 $F \dashv G$ を Quillen 随伴と呼ぶ. また F を左 Quillen 関手, G を右 Quillen 関手という.

命題 **28.** $F \dashv G: C \rightarrow D$ を Quillen 随伴とするとき

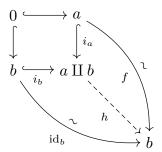
- (1) F は cofibrant を保つ.
- (2) F は cofibrant な対象の間の weak equivalence を保つ.
- (3) G は fibrant を保つ.
- (4) G は fibrant な対称の間の weak equivalence を保つ.

証明. 同様なので 1,2 のみ示す.

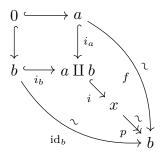
(1) a を cofibrant とする. 即ち!: $0 \to a$ が cofibration である. F が左 Quillen 関手 だから F(!): $F(0) \to F(a)$ も cofibration である. 従って,左随伴は始対象と交換するので, $0 \to F(a)$ が cofibration となり F(a) は cofibrant である.

$$\begin{array}{ccc}
0 & \longrightarrow a \\
\downarrow & \downarrow i_a \\
b & \longrightarrow a \coprod b
\end{array}$$

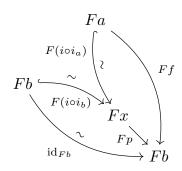
を考える. cofibration の pushout は cofibration (命題 5) だから, i_a, i_b は cofibration である. $f\colon a\to b$, $\mathrm{id}_b\colon b\to b$ から普遍性により得られる射 $h\colon a \amalg b\to b$ を取る.



 $h = (a \coprod b \underset{i}{\hookrightarrow} x \overset{\sim}{\underset{p}{\longrightarrow}} b)$ と分解する.



 p, f, id_b が weak equivalence だから、2-out-of-3 により $i \circ i_a$ と $i \circ i_b$ も weak equivalence である。よって $i \circ i_a$ と $i \circ i_b$ は trivial cofibration となる。F は cofibrant object の間の weak equivalence を保つから、次の図式を得る。



 $F(i \circ i_b)$ と id_{Fb} が weak equivalence だから、2-out-of-3 により F(p) も weak equivalence である。従って $F(f) = F(p) \circ F(i \circ i_a)$ も weak equivalence となる.

従って定理26より次の定理を得る.

定理 **29.** C, D をモデル圏として, $F \dashv G: C \to D$ を Quillen 随伴関手とする. このとき $\underline{\mathbf{L}}F, \underline{\mathbf{R}}G$ が存在して $\underline{\mathbf{L}}F \dashv \underline{\mathbf{R}}G: \operatorname{Ho}(C) \to \operatorname{Ho}(D)$ は随伴である.

定義. Quillen 随伴 $F \dashv G \colon C \to D$ が Quillen 同値 $\iff \underline{\mathbf{L}}F \dashv \underline{\mathbf{R}}G \colon \operatorname{Ho}(C) \to \operatorname{Ho}(D)$ が圏同値を与える.

定理 30. Quillen 随伴 $F \dashv G: C \to D$ に対して次は同値である.

- (1) $F \dashv G$ が Quillen 同値.
- (2) $c \in C$ が cofibrant ならば合成 $c \xrightarrow{\eta_c} GFc \xrightarrow{Gi_{Fc}} GRFc$ が weak equivalence であり, $d \in D$ が fibrant ならば合成 $FQGd \xrightarrow{Fp_{Gd}} FGd \xrightarrow{\varepsilon_d} d$ が weak equivalence である.
- (3) $c \in C$ が cofibrant で $d \in D$ が fibrant ならば、 $f \colon Fc \to d$ が weak equivalence $\iff f$ の随伴射 $\widetilde{f} \colon c \to Gd$ が weak equivalence

証明. $(1 \iff 2)$ $\underline{\mathbf{L}}F \dashv \underline{\mathbf{R}}G$ の unit を $\widetilde{\eta}$ とする. 定理 22 の証明と補題 25 の証明を見れば、 $c \in C$ に対して $\widetilde{\eta}_c = PG(i_{Fc}) \circ P(\eta_c) \circ (Pp_c)^{-1}$ と書けることが分かる. よって

$$\widetilde{\eta}_c$$
が同型 $\iff P(G(i_{Fc}) \circ \eta_c)$ が同型 $\iff G(i_{Fc}) \circ \eta_c$ が weak equivalence (命題 19)

が分かる. ε についても同様である. 故に $1 \Longleftrightarrow 2$ が分かる.

 $(2 \Longrightarrow 3)$ $c \in C$ を cofibrant, $d \in D$ を fibrant, $f: Fc \to d$ を weak equivalence と する. fibrant resolution により次の可換図式を得る.

$$Fc \xrightarrow{\sim} d$$

$$i_{Fc} \downarrow \wr \qquad i_d \downarrow \wr$$

$$RFc \xrightarrow{f'} Rd$$

2-out-of-3 より f' も weak equivalence である. これに G を作用させて次の可換図式を

得る (G は fibrant object の間の weak equivalence を保つことと仮定 2 に気をつける).

$$c \xrightarrow{\eta_c} GFc \xrightarrow{Gf} Gd$$

$$\downarrow Gi_{Fc} \qquad Gi_d \downarrow \wr$$

$$GRFc \xrightarrow{\sim} GRd$$

よって 2-out-of-3 により $\widetilde{f}=Gf\circ\eta_c$ も weak equivalence である. 逆も同様にして次の図式から分かる.

 $(3\Longrightarrow 2)\ c\in C$ を cofibrant とする. RFc が fibrant だから、仮定 3 を使えば Fc の fibrant resolution $i_{Fc}\colon Fc\overset{\sim}{\hookrightarrow} RFc$ の随伴射 $c\overset{\eta_c}{\longrightarrow} GFc\overset{Gi_{Fc}}{\longrightarrow} GRFc$ も weak equivalence であることが分かる. 同様にして $FQGd\overset{Fp_{Gd}}{\longrightarrow} FGd\overset{\varepsilon_d}{\longrightarrow} d$ も weak equivalence である.

以下では、右 Kan 拡張 **L**F の counit を ε^F で表すことにする. 即ち

$$\begin{array}{ccc}
\operatorname{Ho}(C) & \xrightarrow{\underline{\mathbf{L}}F} & \operatorname{Ho}(D) \\
P & & & & \downarrow \varepsilon^F & \uparrow P \\
C & \xrightarrow{E} & D
\end{array}$$

が右 Kan 拡張となる.

定義. $F,F'\colon C\to D$ を左 Quillen 関手とする.このとき自然変換 $\theta\colon F\Rightarrow F'$ に対して $\underline{\mathbf{L}}\theta\colon \underline{\mathbf{L}}F\Rightarrow \underline{\mathbf{L}}F'$ を,右 Kan 拡張の普遍性により得られる次の自然変換とする.

$$Ho(C) \xrightarrow{\underline{\mathbf{L}}F} Ho(D) \qquad Ho(C) \xrightarrow{\underline{\mathbf{L}}F} Ho(D)$$

$$P \uparrow \qquad \downarrow \underline{\mathbf{L}}F' \qquad \uparrow P \qquad P \qquad \downarrow \varepsilon^F \qquad \uparrow P$$

$$C \xrightarrow{\underline{\mathbf{L}}F'} D \qquad C \xrightarrow{\underline{\mathbf{L}}F} D$$

命題 **31.** $F, F': C \to D$ を左 Quillen 関手, $\theta: F \Rightarrow F'$ を自然変換とする.このとき $\underline{\mathbf{L}}\theta$ が自然同型 \iff cofibrant な $c \in C$ に対して θ_c が weak equivalence.

証明. 定理 22 の証明と命題 19 より

 $\underline{\mathbf{L}}\theta$ が自然同型 \iff 任意の $a\in C$ に対して $P\theta_{Qa}$ が同型 \iff 任意の $a\in C$ に対して θ_{Qa} が weak equivalence

である. 故に示したい主張の ← は成り立つことが分かる.

逆に \Longrightarrow は、任意の cofibrant な $c \in C$ に対して Qc = c となることから分かる.

補題 **32.** $F \dashv G: A \to B, \ S \dashv T: B \to C$ を Quillen 随伴とする. このとき 随伴の合成 $SF \dashv GT: A \to C$ も Quillen 随伴である.

証明. $a \in A$ が cofibrant で $c \in C$ が fibant のとき

 $SFa \to c$ が weak equivalence \iff その随伴射 $Fa \to Tc$ が weak equivalence \iff 更にその随伴射 $a \to GTc$ が weak equivalence

となるので、定理 30 より $SF \dashv GT$ は Quillen 随伴である.

定理 **33.** 以下のように定めると strict 2-category になる. これを **Model** で表す.

- モデル圏を対象とする.
- Quillen 随伴 $F \dashv G: A \rightarrow B$ を A から B への 1-morphism とする.
- 自然変換 $F \Rightarrow F'$ を、 $F \dashv G$ から $F' \dashv G'$ への 2-morphism とする.

証明. まず明らかに,モデル圏 A, B に対して $\mathbf{Model}(A, B)$ は圏である.

次に Quillen 随伴の合成を補題 32 により定める.自然変換の合成は水平合成とすれば,これは明らかに関手 $\mathbf{Model}(B,C) \times \mathbf{Model}(A,B) \to \mathbf{Model}(A,C)$ となり,結合律を満たす.

またモデル圏 A に対して、unit も counit も id となる随伴 id \dashv id: $A \to A$ を考えれば、これが恒等射の条件を満たす.よって **Model** は strict 2-category である.

定理 34. ホモトピー圏を与える対応は pseudofunctor Ho: Model \rightarrow Adj を与える. 即ち

• Quillen 随伴 $F \dashv G : C \to D$ に対して $\text{Ho}(F \dashv G) := (\underline{\mathbf{L}}F \dashv \underline{\mathbf{R}}G)$.

• $F \dashv G$, $F' \dashv G' : C \to D$ を Quillen 随伴とする. このとき自然変換 $\theta : F \Rightarrow F'$ に対して $\text{Ho}(\theta) := \mathbf{L}\theta : \mathbf{L}F \Rightarrow \mathbf{L}F'$ と定める.

証明. まずモデル圏 A, B, C に対して自然同型

$$\begin{array}{c} \mathbf{Model}(B,C) \times \mathbf{Model}(A,B) \\ \text{Ho} \times \text{Ho} \\ \end{array}$$

$$\begin{array}{c} \mathbf{Adj}(\text{Ho}(B),\text{Ho}(C)) \times \mathbf{Adj}(\text{Ho}(A),\text{Ho}(B)) & \overset{\sim}{\Longrightarrow} & \mathbf{Model}(A,C) \\ C & & & & \text{Ho} \\ \end{array}$$

$$\begin{array}{c} \mathbf{Adj}(\text{Ho}(A),\text{Ho}(C)) \end{array}$$

を定義する. その為に左 Quillen 関手 $F:A\to B,\ K:B\to C$ に対して自然変換 φ_{KF} を、右 Kan 拡張の普遍性により得られる次の自然変換とする.

このとき φ は上記の自然変換となる.

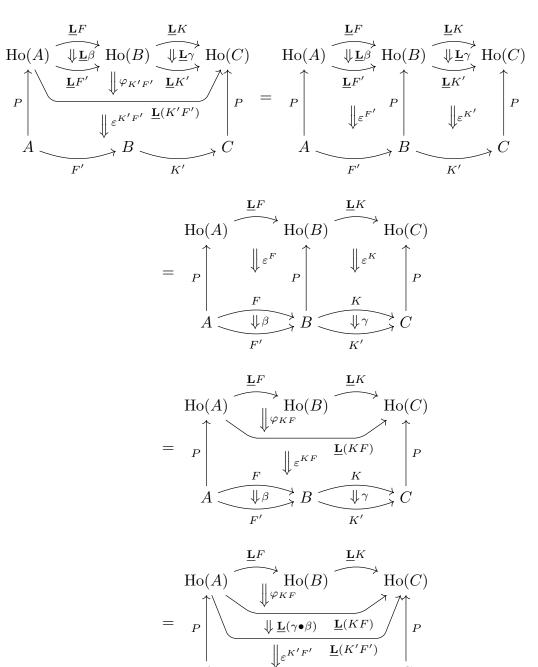
...) 自然変換 $\beta\colon F\Rightarrow F',\ \gamma\colon K\Rightarrow K'$ に対して次の図式が可換であることを示せば

$$\underline{\mathbf{L}}K \circ \underline{\mathbf{L}}F \xrightarrow{\varphi_{KF}} \underline{\mathbf{L}}(KF)$$

$$\underline{\mathbf{L}}\gamma \bullet \underline{\mathbf{L}}\beta \downarrow \qquad \qquad \downarrow \operatorname{Ho}(\gamma \bullet \beta)$$

$$\underline{\mathbf{L}}K' \circ \underline{\mathbf{L}}F' \xrightarrow{\varphi_{K'F'}} \underline{\mathbf{L}}(K'F')$$

それは



となるから、右 Kan 拡張 $\underline{\mathbf{L}}(K'F')$ の普遍性により分かる.

この φ は自然同型である.

 (\cdot,\cdot) φ_{KF} が自然同型であることを示せばよいが,それは定理 22 の証明より,任意の

$$a \in C$$
 に対して $(\varphi_{KF})_a = \underline{\mathbf{L}}K \circ \underline{\mathbf{L}}F \circ P(p_a)^{-1}$ となることから分かる.

次にモデル圏 C に対して自然変換 ψ : $\mathrm{id}_{\mathrm{Ho}(C)} \Rightarrow \underline{\mathbf{L}} \mathrm{id}_C$ を

$$\operatorname{Ho}(C) \xrightarrow{\operatorname{id}_{\operatorname{Ho}(C)}} \operatorname{Ho}(C) \qquad \operatorname{Ho}(C) \xrightarrow{\operatorname{id}_{\operatorname{Ho}(C)}} \operatorname{Ho}(C)$$

$$\downarrow \psi \qquad \uparrow \qquad \uparrow \qquad \downarrow \operatorname{id} \qquad \downarrow \operatorname{id} \qquad \downarrow \operatorname{id} \qquad \downarrow \operatorname{id} \qquad \downarrow \qquad \downarrow \operatorname{id} \qquad \downarrow \qquad \downarrow \operatorname{id} \qquad \downarrow \operatorname{id}$$

により定義する. この ψ は自然同型である.

 $\dot{}$ 、) 定理 22 の証明より,任意の $a\in C$ に対して $\psi_a=P(p_a)^{-1}$ となることから分かる.

以上の φ, ψ が Ho を pseudofunctor とすることを示そう.

まず左 Quillen 関手 $F:A\to B,\ K:B\to C,\ M:C\to D$ に対して、次の図式が可換であることを示す.

$$(\underline{\mathbf{L}}M\circ\underline{\mathbf{L}}K)\circ\underline{\mathbf{L}}F\xrightarrow{\varphi_{MK}\bullet\underline{\mathbf{L}}F}\underline{\mathbf{L}}(MK)\circ\underline{\mathbf{L}}F\xrightarrow{\varphi_{MK,F}}\underline{\mathbf{L}}((MK)F)$$

$$\downarrow \mid \qquad \qquad \qquad \qquad \downarrow \downarrow$$

$$\underline{\mathbf{L}}M\circ(\underline{\mathbf{L}}K\circ\underline{\mathbf{L}}F)\xrightarrow{\underline{\mathbf{L}}M\bullet\varphi_{KF}}\underline{\mathbf{L}}M\circ\underline{\mathbf{L}}(KF)\xrightarrow{\varphi_{M,KF}}\underline{\mathbf{L}}(M(KF))$$

それは

$$\operatorname{Ho}(A) \xrightarrow{\longrightarrow} \operatorname{Ho}(B) \xrightarrow{\longrightarrow} \operatorname{Ho}(C) \xrightarrow{\longrightarrow} \operatorname{Ho}(D)$$

$$= P \downarrow \qquad \qquad \downarrow \varepsilon^{F} \qquad \qquad \downarrow P \qquad \downarrow \varepsilon^{M} \qquad \qquad \downarrow P$$

$$A \xrightarrow{F} B \xrightarrow{K} C \xrightarrow{M} D$$

$$\operatorname{Ho}(A) \xrightarrow{\overset{\longleftarrow}{L}F} \operatorname{Ho}(B) \xrightarrow{\overset{\longleftarrow}{L}K} \operatorname{Ho}(C) \xrightarrow{\overset{\longleftarrow}{L}M} \operatorname{Ho}(D)$$

$$= P \downarrow \qquad \qquad \downarrow \varepsilon^{F} \qquad \qquad \downarrow P \qquad \qquad \downarrow \varepsilon^{MK} \qquad \qquad \downarrow P$$

$$A \xrightarrow{F} B \xrightarrow{K} C \xrightarrow{M} D$$

$$\operatorname{Ho}(A) \xrightarrow{\overset{\longleftarrow}{L}F} \operatorname{Ho}(B) \xrightarrow{\overset{\longleftarrow}{L}K} \operatorname{Ho}(C) \xrightarrow{\overset{\longleftarrow}{L}M} \operatorname{Ho}(D)$$

$$= P \downarrow \qquad \qquad \downarrow \varepsilon^{MKF} \xrightarrow{\overset{\longleftarrow}{L}(MKF)} \qquad \qquad \downarrow P$$

$$\downarrow \varepsilon^{MKF} \xrightarrow{\overset{\longleftarrow}{L}(MKF)} \qquad \qquad \downarrow P$$

$$\downarrow \varepsilon^{MKF} \xrightarrow{\overset{\longleftarrow}{L}(MKF)} \qquad \qquad \downarrow P$$

となるから右 Kan 拡張 $\mathbf{L}(MKF)$ の普遍性により分かる.

後は、E Quillen 関手 $F: A \to B$ に対して次の図式が可換であることを示せばよい.

どちらも同様であるから、左の図式の可換性について示す. それは

$$\operatorname{Ho}(A) \xrightarrow{\underline{\mathbf{L}}F} \operatorname{Ho}(B) \xrightarrow{\operatorname{id}_{\operatorname{Ho}(B)}} \operatorname{Ho}(B) \qquad \operatorname{Ho}(A) \xrightarrow{\underline{\mathbf{L}}F} \operatorname{Ho}(B) \xrightarrow{\operatorname{id}_{\operatorname{Ho}(B)}} \operatorname{Ho}(B)$$

$$P \downarrow \qquad \qquad \downarrow \varphi_{\operatorname{id},F} \qquad \qquad \downarrow \varphi_{\operatorname{id},F} \qquad \qquad \downarrow \varphi_{\operatorname{id},F} \qquad \downarrow \varphi_{\operatorname$$

$$Ho(A) \xrightarrow{\underline{\mathbf{L}}F} Ho(B) \xrightarrow{\mathrm{id}_{Ho(B)}} Ho(B) \qquad Ho(A) \xrightarrow{\underline{\mathbf{L}}F} Ho(B)$$

$$= \bigwedge_{P} \bigoplus_{\varepsilon^{F}} \bigwedge_{P} \bigoplus_{\mathrm{id}} \bigoplus_{P} \bigoplus_{P} \bigoplus_{A} \bigoplus_{F} B$$

$$A \xrightarrow{F} B \xrightarrow{\mathrm{id}_{B}} B \qquad A \xrightarrow{F} B$$

となるから $\mathbf{L}F$ の普遍性により分かる.

参考文献

- [1] W. G. Dwyer and J. Spalinski, Homotopy theories and model categories, HAND-BOOK OF ALGEBRAIC TOPOLOGY, 1995
- [2] M. Hovey, Model Categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.