圏の構成例

alg-d

https://alg-d.com/math/kan_extension/

2025年1月12日

例えば群の場合では、群G,Hが与えられたときに新しい群 $G \times H$ を構成することができた。ここでは圏が与えられたときに、新しい圏を構成する方法をいくつか紹介する。

定義. 圏 C,D の直積 $C \times D$ を以下のように定義する.

- 対象は「C の対象と D の対象の組」である.即ち $\mathrm{Ob}(C \times D) := \mathrm{Ob}(C) \times \mathrm{Ob}(D)$ となる.
- $\langle c,d \rangle$ から $\langle c',d' \rangle$ への射は成分ごとの射の組 $\langle f\colon c\to c',g\colon d\to d' \rangle$ である. つまり $\operatorname{Hom}_{C\times D}(\langle c,d \rangle,\langle c',d' \rangle):=\operatorname{Hom}_{C}(c,c')\times\operatorname{Hom}_{D}(d,d')$ となる.
- 射の合成は成分ごとに行う. 即ち $\langle g, g' \rangle \circ \langle f, f' \rangle := \langle g \circ f, g' \circ f' \rangle$ となる.
- $\langle c, d \rangle$ の恒等射は $\mathrm{id}_{\langle c, d \rangle} := \langle \mathrm{id}_c, \mathrm{id}_d \rangle$ である.

この $C \times D$ が圏の定義を満たすことは殆ど明らかであろう.

例 1. 集合 X,Y を離散圏と見なして圏の直積 $X\times Y$ を考えると, X,Y の射は id しかないから, $X\times Y$ の射も id のみになる.従って $X\times Y$ も離散圏である.Ob($X\times Y$) = Ob(X) × Ob(Y) だったから,圏の直積 $X\times Y$ は直積集合 $X\times Y$ を離散圏とみなしたものである.

例 2. モノイド M,N を圏とみなして圏の直積 $M \times N$ を考えると

$$\mathrm{Ob}(M \times N) = \mathrm{Ob}(M) \times \mathrm{Ob}(N) = \{*\} \times \{*\} = \{\langle *, * \rangle\}$$

だから $M \times N$ もモノイドとなる. 圏の直積の定義から

$$\operatorname{Hom}_{M\times N}(\langle *, *\rangle, \langle *, *\rangle) = \operatorname{Hom}_{M}(*, *) \times \operatorname{Hom}_{N}(*, *) = M \times N$$

となるので、圏の直積 $M \times N$ はモノイドとしての直積 $M \times N$ を圏とみなしたものであ

る. 特に、群G, Hの圏としての直積は、直積群 $G \times H$ を圏とみなしたものである.

例 3. 圏 $2 = \{0 \xrightarrow{f} 1\}$ を考える。直積 2×2 は 4 個の対象 $\langle 0, 0 \rangle$, $\langle 0, 1 \rangle$, $\langle 1, 0 \rangle$, $\langle 1, 1 \rangle$ を持つ。2 の射の数は 3 個だから, 2×2 の射は 9 個である。対象が 4 個だから,9 個の射のうち 4 個は恒等射である。残りの 5 個の射を図示すると次のようになる。

$$\begin{array}{c} \langle 0, 0 \rangle \xrightarrow{\langle \mathrm{id}_0, f \rangle} \langle 0, 1 \rangle \\ \\ \langle f, \mathrm{id}_0 \rangle \downarrow & & \langle f, f \rangle \downarrow \langle f, \mathrm{id}_1 \rangle \\ \\ \langle 1, 0 \rangle \xrightarrow{\langle \mathrm{id}_1, f \rangle} \langle 1, 1 \rangle \end{array}$$

集合などの直積では標準的な射影が与えられるが、圏の直積でも同様に「射影」を与える関手を定義することができる。圏 C,D に対して関手 $P:C\times D\to C$ を次のように定義する.

- 対象 $\langle c, d \rangle \in C \times D$ に対して $P(\langle c, d \rangle) := c$ とする.
- 射 $\langle f,g \rangle$: $\langle c,d \rangle \rightarrow \langle c',d' \rangle$ に対して $P(\langle f,g \rangle) := f$ とする.

P が関手となることは明らかであろう.これが C への射影である.D への射影も同様に定義できる.

定義. 圏 C,D の直和 $C \coprod D$ を以下のように定義する.

- $Ob(C \coprod D) := Ob(C) \sqcup Ob(D)$ (非交和) である.
- a から b への射は以下のように定める.

$$\operatorname{Hom}_{C \coprod D}(a,b) := \left\{ egin{array}{ll} \operatorname{Hom}_{C}(a,b) & (a,b \in C \ \mathcal{O} \ \mathcal{E} \ \mathcal{E}) \\ \operatorname{Hom}_{D}(a,b) & (a,b \in D \ \mathcal{O} \ \mathcal{E} \ \mathcal{E}) \\ \emptyset & (それ以外のとき) \end{array} \right.$$

- 射の合成は C, D の合成で行う.
- 恒等射は *C*, *D* の恒等射である.

例 4. 集合 X,Y を離散圏と見なして圏の直和 $X \coprod Y$ を考えると,これは X と Y の非交和 $X \sqcup Y$ を離散圏とみなしたものである.

次にスライス圏という構成方法を紹介する.

定義. C を圏, $x \in C$ を対象とする. スライス圏 (slice category もしくは over category) C/x を以下のように定義する.

- 対象は C の射 $f: a \to x$ である.
- $f: a \to x$ から $g: b \to x$ への射は、 $g \circ h = f$ となるような射 $h: a \to b$ である.

- 射の合成は C の合成で行う.
- 恒等射は C の恒等射である.

スライス圏と同じような方法でコスライス圏を得ることができる.

定義. C を圏, $x \in C$ を対象とする. コスライス圏 (coslice category もしくは under category) x/C を以下のように定義する.

- 対象は C の射 $f: x \to a$ である.
- $f: x \to a$ から $g: x \to b$ への射は、 $h \circ f = g$ となるような射 $h: a \to b$ である.

- 射の合成は C の合成で行う.
- 恒等射は C の恒等射である.

例 5. $1 \in \mathbf{Set}$ を 1 元集合として $\mathbf{Set}/1$ を考える. 集合 X に対して写像 $f: X \to 1$ はただ 1 つしかない. よって $\mathbf{Ob}(\mathbf{Set}/1) = \mathbf{Ob}(\mathbf{Set})$ と見なしてよい. $X, Y \in \mathbf{Ob}(\mathbf{Set}) = \mathbf{Ob}(\mathbf{Set}/1)$ を取ると、任意の $h: X \to Y$ に対して次の図式は可換である.

よって任意の $h: X \to Y$ が $\mathbf{Set}/1$ の射となる. 以上により $\mathbf{Set}/1 = \mathbf{Set}$ と見なせる (つまり正確に言えば圏同型 $\mathbf{Set}/1 \cong \mathbf{Set}$ となる) ことが分かる.

※ これはより正確に言えば、圏の同型 $\mathbf{Set}/1 \cong \mathbf{Set}$ が成り立っているということである. つまり関手 $F \colon \mathbf{Set}/1 \to \mathbf{Set}$ を

- Set/1 の対象 f に対して $F(f) := dom(f) \in Set$ とする.
- Set/1 の射 h に対して F(h) := h とする.

と定めれば、この F が同型 $\mathbf{Set}/1 \cong \mathbf{Set}$ を与えることが容易に分かる.

同様にして \emptyset /**Set** \cong **Set** も分かる.

例 6. 単位的可換環を対象,環準同型を射とする圏を \mathbf{CRing} と書く.このとき $k \in \mathbf{CRing}$ に対して,コスライス圏 k/\mathbf{CRing} は k-代数の圏である.

例 7. $1 \in \text{Top}$ を 1 点空間としたとき $1/\text{Top} \cong \text{Top}_*$ である*1.

最後に部分圏というものを導入する.

定義. C, D を圏とする. C が D の部分圏 (subcategory) であるとは, $Ob(C) \subset Ob(D)$, $Mor(C) \subset Mor(D)$ であって, C におけるドメイン, コドメイン, 合成, 恒等射が D におけるそれと一致していることをいう. 記号では $C \subset D$ と書く.

定義. 部分圏 $C \subset D$ が充満部分圏 (full subcategory) であるとは、任意の $a,b \in C$ に対して $\operatorname{Hom}_C(a,b) = \operatorname{Hom}_D(a,b)$ となることをいう.

例 8. 写像の合成を射の合成とすることで、以下のような圏 Inj, FinSet, FinInj を定めることができる.

- 集合を対象, 単射を射とする圏を Inj とする.
- 有限集合を対象、写像を射とする圏を FinSet とする.
- 有限集合を対象、単射を射とする圏を FinInj とする.

このように定義したとき $FinInj \subset Inj \subset Set$ と $FinInj \subset FinSet \subset Set$ は部分圏である. 更に $FinInj \subset Inj$ と $FinSet \subset Set$ は充満部分圏になっている.

例 9. アーベル群を対象、群準同型を射とする圏を Ab と書く、アーベル群は群だから部

 $^{^{*1}}$ \mathbf{Top}_{\star} は基点付き位相空間の圏である.定義は「圏論とは何か」の PDF を参照.

分圏 $\mathbf{Ab} \subset \mathbf{Grp}$ となる.これは充満部分圏である.	
例 10. 集合を離散圏とみなした時,部分圏とは部分集合のことである。またこの部分圏は常に充満部分圏となる。	の場合,
例 11. G を群, $H\subsetneq G$ を真の部分群として G,H を圏とみなせば $H\subset G$ は部分るが充満部分圏ではない.また逆に $C\subset G$ を部分圏で $C\neq \mathbb{O}$ とすると, C はそではあるが群であるとは限らない.	
例 12. 圏 C に対して集まり $X \subset \mathrm{Ob}(C)$ が与えられたとき、部分圏 $D \subset C$ を	
 Ob(D) := X とする。 a, b ∈ X に対して Hom_D(a, b) := Hom_C(a, b) とする。 	
により定義することができる. これは明らかに充満部分圏である.	