Lindenbaum の定理と選択公理

alg-d

http://alg-d.com/math/ac/

2016年5月29日

定義. S を集合とする . 写像 $Cn: \mathcal{P}(S) \longrightarrow \mathcal{P}(S)$ が S 上の consequence operation とは以下の条件を満たすことを言う:

- 1. $X \in \mathcal{P}(S)$ に対して $X \subset \operatorname{Cn}(X)$ である.
- 2. $Cn \circ Cn = Cn$ である.
- $3. \ X,Y \in \mathcal{P}(S)$ について , $X \subset Y$ ならば $\operatorname{Cn}(X) \subset \operatorname{Cn}(Y)$ である .
- $4.~X\in\mathcal{P}(S)$ とする.任意の $x\in\mathrm{Cn}(X)$ に対してある有限部分集合 $Y\subset X$ が存在して $x\in\mathrm{Cn}(Y)$ となる.

集合 $S \geq S$ 上の consequence operation Cn の組 $\langle S, Cn \rangle$ を system と呼ぶ.

定義. $\langle S, \operatorname{Cn} \rangle$ を system で $X \in \mathcal{P}(S)$, $x \in S$ とする.

- 1. X が矛盾する \iff Cn(X) = S.
- 2. X が無矛盾 $\Longleftrightarrow X$ が矛盾しない .
- 3. X が理論 $\iff \operatorname{Cn}(X) = X$.
- $4. \ X$ が極大理論 $\Longleftrightarrow X$ が無矛盾な理論で,任意の $Y \supseteq X$ が矛盾する.
- 5. X が x-飽和 $\iff x \notin \operatorname{Cn}(X)$ で , 任意の $y \notin X$ に対して $x \in \operatorname{Cn}(X \cup \{y\})$.
- 6. Cn がコンパクト \Longleftrightarrow 矛盾する任意の X に対して , 矛盾する有限部分集合 $Y\subset X$ が存在する .

定理 1. 選択公理 \iff $\langle S, \operatorname{Cn} \rangle$ を system として $X \in \mathcal{P}(S)$, $x \in S$ とする . $x \notin \operatorname{Cn}(X)$ ならば x-飽和な理論 $Y \supset X$ が存在する .

証明. (\Longrightarrow) 選択公理により,ある極限順序数 λ を使って $S=\{x_{\alpha}\mid \alpha<\lambda\}$ と書ける.

 $\alpha \leq \lambda$ に対して X_{α} を

$$X_{\alpha} := \left\{ egin{array}{ll} X & (lpha = 0 \, extbf{ のとき}) \ X_{eta} \cup \{x_{eta}\} & (lpha = eta + 1, \, x
otin \operatorname{Cn}(X_{eta} \cup \{x_{eta}\}) \, extbf{ のとき}) \ X_{eta} & (lpha = eta + 1, \, x
otin \operatorname{Cn}(X_{eta} \cup \{x_{eta}\}) \, extbf{ のとき}) \ \bigcup_{eta < lpha} X_{eta} & (lpha extbf{ が極限順序数のとき}) \end{array}
ight.$$

で定義する $Y := X_{\lambda}$ が x-飽和な理論であることを示せばよい .

まず Y が理論であることを示すため, $Y \subsetneq \operatorname{Cn}(Y)$ と仮定する. $x_{\alpha} \in \operatorname{Cn}(Y) \setminus Y$ となる $\alpha < \lambda$ が存在する. $x_{\alpha} \in \operatorname{Cn}(Y)$ だからある有限部分集合 $Z \subset Y$ が存在して $x_{\alpha} \in \operatorname{Cn}(Z)$ となる. $Z = \{x_{\beta_1}, \cdots, x_{\beta_n}\}$, $\beta_1 < \cdots < \beta_n$ と書く.このとき $\beta_n < \alpha$ である.

(\cdot,\cdot) $\alpha \leq \beta_n$ と仮定すると

$$X_{\alpha} \subset X_{\beta_n} \subset X_{\beta_n} \cup \{x_{\beta_n}\} \subset \operatorname{Cn}(X_{\beta_n} \cup \{x_{\beta_n}\})$$

となる.また $Z\subset X_{\beta_n}\cup\{x_{\beta_n}\}$ だから $x_{\alpha}\in \operatorname{Cn}(Z)\subset\operatorname{Cn}(X_{\beta_n}\cup\{x_{\beta_n}\})$ であるので, $X_{\alpha}\cup\{x_{\alpha}\}\subset\operatorname{Cn}(X_{\beta_n}\cup\{x_{\beta_n}\})$ が分かる.故に

$$x \in \operatorname{Cn}(X_{\alpha} \cup \{x_{\alpha}\}) \subset \operatorname{Cn}(\operatorname{Cn}(X_{\beta_n} \cup \{x_{\beta_n}\})) = \operatorname{Cn}(X_{\beta_n} \cup \{x_{\beta_n}\})$$

となるが , 一方 $x_{\beta_n}\in Y=X_\lambda$ より $x\notin \mathrm{Cn}(X_{\beta_n}\cup\{x_{\beta_n}\})$ となり矛盾する .

よって $Z\subset X_{\alpha}$ が分かり $x_{\alpha}\in {\rm Cn}(Z)\subset {\rm Cn}(X_{\alpha})$ である.従って $X_{\alpha}\cup\{x_{\alpha}\}\subset {\rm Cn}(X_{\alpha})$ だから

$$x \in \operatorname{Cn}(X_{\alpha} \cup \{x_{\alpha}\}) \subset \operatorname{Cn}(\operatorname{Cn}(X_{\alpha})) = \operatorname{Cn}(X_{\alpha})$$

が分かる.よって有限部分集合 $W\subset X_{\alpha}$ が存在して $x\in \operatorname{Cn}(W)$ となる. $W=\{x_{\gamma_1},\cdots,x_{\gamma_m}\}$, $\gamma_1<\cdots<\gamma_m$ と書く. $W\subset X_{\alpha}$ だから $\gamma<\alpha$ である.また $x_{\gamma_m}\in X_{\alpha}$ となるので $x\notin\operatorname{Cn}(X_{\gamma_m}\cup\{x_{\gamma_m}\})$ でなければならない.しかし $W\subset X_{\gamma_m}\cup\{x_{\gamma_m}\}$ だから $x\in\operatorname{Cn}(W)\subset\operatorname{Cn}(X_{\gamma_m}\cup\{x_{\gamma_m}\})$ となり矛盾する.以上により Y が理論であることが分かった.

Y が x-飽和であることを示す.まず $x \notin \operatorname{Cn}(Y)$ を示すため $x \in \operatorname{Cn}(Y)$ と仮定する.ある有限部分集合 $Z \subset Y$ が存在して $x \in \operatorname{Cn}(Z)$ となる. $Z = \{x_{\beta_1}, \cdots, x_{\beta_n}\}$, $\beta_1 < \cdots < \beta_n$ と書く. $x_{\beta_n} \in Y$ となる為には $x \notin \operatorname{Cn}(X_{\beta_n} \cup \{x_{\beta_n}\})$ でなければならない.一方 $Z \subset X_{\beta_n} \cup \{x_{\beta_n}\}$ だから $x \in \operatorname{Cn}(Z) \subset \operatorname{Cn}(X_{\beta_n} \cup \{x_{\beta_n}\})$ となり矛盾する.故に $x \notin \operatorname{Cn}(Y)$ である.

後は任意の $y\notin Y$ に対して $x\in \operatorname{Cn}(Y\cup\{y\})$ を示せばよい . $y\notin Y$ とする . $y=x_{\alpha}$ と書けば , $x_{\alpha}\notin Y=X_{\lambda}$ だから $x\in\operatorname{Cn}(X_{\alpha}\cup\{x_{\alpha}\})$ である . $X_{\alpha}\cup\{x_{\alpha}\}\subset Y\cup\{x_{\alpha}\}$ より $x\in\operatorname{Cn}(X\cup\{x_{\alpha}\})$ となる .

 (\longleftarrow) $\{X_\lambda\}_{\lambda\in\Lambda}$ を互いに素な非空集合の族とする. $S:=\bigcup_{\lambda\in\Lambda}X_\lambda$ として $\mathrm{Cn}\colon\mathcal{P}(S)\longrightarrow\mathcal{P}(S)$ を, $X\in\mathcal{P}(S)$ に対して

と定める. Cn は明らかに consequence operation である.

ある $\mu\in\lambda$ に対して $|X_\mu|>1$ としてよい. $a\in X_\mu$ を一つ取る. $\mathrm{Cn}(\emptyset)=\emptyset$ だから $a\notin\mathrm{Cn}(\emptyset)$ となる.故に仮定により a-飽和な理論 $Y\supset\emptyset$ が存在する.Y が理論だから $\mathrm{Cn}(Y)=Y$ であり,a-飽和だから $\mathrm{Cn}(Y)\subsetneq S$ である.故にある $\Sigma\subset\Lambda$ が存在して Y は $\{X_\lambda\}_{\lambda\in\Sigma}$ の選択集合となる.

 $\Sigma=\Lambda$ を示せばよい.その為に $\Sigma\subsetneq\Lambda$ と仮定すると $\lambda\in\Lambda\setminus\Sigma$ が取れる. $x\in X_\lambda$ を任意にとる(但し $\lambda=\mu$ の場合は $x\neq a$ としておく).明らかに $Y\cup\{x\}$ は $\{X_\lambda\}_{\lambda\in\Sigma\cup\{\lambda\}}$ の選択集合である. $x\notin Y$ だから,Y が a-飽和であることより $a\in\operatorname{Cn}(Y\cup\{x\})$ かつ $a\notin\operatorname{Cn}(Y)=Y$ である.従って $a\notin Y\cup\{x\}$ だから $\operatorname{Cn}(Y\cup\{x\})\neq Y\cup\{x\}$ が分かる.故に $Y\cup\{x\}$ が $\{X_\lambda\}_{\lambda\in\Sigma\cup\{\lambda\}}$ の選択集合であることに矛盾する.

定理 2. 選択公理 \iff $\langle S, \operatorname{Cn} \rangle$ を system として Cn がコンパクトなとき,任意の無矛盾な理論 $X \in \mathcal{P}(S)$ に対して極大理論 $Y \supset X$ が存在する.

証明. (⇒) 省略

 (\longleftarrow) $\{X_\lambda\}_{\lambda\in\Lambda}$ を互いに素な非空集合の族とする. $S:=\bigcup_{\lambda\in\Lambda}X_\lambda$ として $\mathrm{Cn}\colon\mathcal{P}(S)\longrightarrow\mathcal{P}(S)$ を, $X\in\mathcal{P}(S)$ に対して

$$\mathrm{Cn}(X) := \left\{ egin{array}{ll} X & (ある \Sigma \subset \Lambda \ \emph{m} \ \emph{FREDT} \ X \ \emph{m} \ \{X_{\lambda}\}_{\lambda \in \Sigma} \ \emph{o}$$
選択集合となるとき) $S & (\emph{そうでないとき}) \end{array}
ight.$

と定める. Cn は明らかに consequence operation である.

ある $\mu\in\lambda$ に対して $|X_\mu|>1$ としてよい.すると Cn は明らかにコンパクトである. $\mathrm{Cn}(\emptyset)=\emptyset$ だから \emptyset は無矛盾な理論であり,よって極大理論 $Y\supset\emptyset$ が存在する.Y が理論だから $\mathrm{Cn}(Y)=Y$ であり,無矛盾だから $\mathrm{Cn}(Y)\subsetneq S$ である.故にある $\Sigma\subset\Lambda$ が存在して Y は $\{X_\lambda\}_{\lambda\in\Sigma}$ の選択集合となる.

 $\Sigma=\Lambda$ を示せばよい.その為に $\Sigma\subsetneq\Lambda$ と仮定すると $\lambda\in\Lambda\setminus\Sigma$ が取れる. $x\in X_\lambda$ を任意にとる.明らかに $Y\cup\{x\}$ は $\{X_\lambda\}_{\lambda\in\Sigma\cup\{\lambda\}}$ の選択集合である. $x\notin Y$ だから,Y が

極大理論であることより $\mathrm{Cn}(Y\cup\{x\})=S$ となる.故に $Y\cup\{x\}$ が $\{X_\lambda\}_{\lambda\in\Sigma\cup\{\lambda\}}$ の選択集合であることに矛盾する.

参考文献

- [1] D. Miller, Some Restricted Lindenbaum Theorems Equivalent to the Axiom of Choice, Logica Universalis, Volume 1 Issue 1 (2007), 183–199
- [2] Dzik W., The Existence of Lindenbaum's Extensions is Equivalent to the Axiom of Choice, Reports on Mathematical Logic 12 (1981), 29–31